

 International Journal of Information Technology Applications

International Journal of

Information Technology Applications (ITA)

Volume 11, Number 2, December 2022

AIMS AND SCOPE OF ITA

The primary aim of the International Journal of Information Technology Applications (ITA) is to

publish high-quality papers of new development and trends, novel techniques, approaches and

innovative methodologies of information technology applications in the broad areas. The

International Journal of ITA is published twice a year. Each paper is refereed by two international

reviewers. Accepted papers will be available online with no publication fee for authors. The

International Journal of ITA is being prepared for the bibliographic scientific database Scopus.

Editor-in-Chief

prof. Ing. Štefan Kozák, PhD. Faculty of Informatics, Pan-European University in Bratislava

stefan.kozak@paneurouni.com

Executive Editor

Ing. Juraj Štefanovič, PhD., Faculty of Informatics, Pan-European University in Bratislava

juraj.stefanovic@paneurouni.com

Editorial Board

Ladislav Andrášik, Slovakia

Mikhail A. Basarab, Russia

Ivan Brezina, Slovakia

Yakhua G. Buchaev, Russia

Oleg Choporov, Russia

Silvester Czanner, United Kingdom

Andrej Ferko, Slovakia

Vladimír S. Galayev, Russia

Ladislav Hudec, Slovakia

Jozef Kelemen, Czech Republic

Sergey Kirsanov, Russia

Vladimir I. Kolesnikov, Russia

Štefan Kozák, Slovakia

Vladimír Krajčík, Czech Republic

Ján Lacko, Slovakia

Igor Lvovich, Russia

Eva Mihaliková, Slovakia

Branislav Mišota, Slovakia

Martin Potančok, Czech Republic

Eugen Ružický, Slovakia

Václav Řepa, Czech Republic

Jiří Voříšek, Czech Republic

International Journal of Information Technology Applications

International Journal of

Information Technology Applications (ITA)

Instructions for authors

The International Journal of Information Technology Applications is welcoming contributions

related with the journal´s scope. Scientific articles in the range approximately 10 standard pages

are reviewed by two international reviewers. Reports up to 5 standard pages and information

notices in range approximately 1 standard page are accepted after the decision of editorial board.

Contributions should be submitted via e-mail to the editorial office. The language of

contributions is English. Text design should preserve the layout of the template file, which may

be downloaded from the webpage of journal. Contributions submitted to this journal are under

the author´s copyright responsibility and they are supposed not being published in the past.

Deadlines of two standard issues per year

paper submission deadline – end of May/end of October

review deadline – continuous process

camera ready deadline – end of June/end of November

release date – Summer/Winter

Editorial office address

Faculty of Informatics, Pan-European University, Tematínska 10, 851 05 Bratislava, Slovakia

juraj.stefanovic@paneurouni.com

Published by

Pan-European University, Slovakia, http://www.paneurouni.com

Paneurópska vysoká škola, n.o., Tomášikova 20, 821 02 Bratislava, IČO 36 077 429

Civil Association EDUCATION-SCIENCE-RESEARCH, Slovakia, http://www.e-s-r.org

OZ VZDELÁVANIE -VEDA-VÝSKUM, Andrusovova 5, 851 01 Bratislava,

IČO 42 255 180

Slovak Society for Cybernetics and Informatics (SSKI)

at the Slovak Academy of Sciences,

Slovenská spoločnosť pre kybernetiku a informatiku pri SAV (SSKI),

Ústav automobilovej mechatroniky, Fakulta elektrotechniky a informatiky STU,

Ilkovičova 3, 812 19 Bratislava 1, IČO 00 178 730, http://www.sski.sk

Electronic online version of journal

http://www.paneurouni.com/ITA visit Archive and Instructions for authors:

http://www.e-s-r.org

Print

Multigrafika s.r.o., Rajecká 13, 821 07 Bratislava

Subscription

Contact the editorial office for details.

Older print issues are available until they are in stock.

ISSN: 2453-7497 (online)

ISSN: 1338-6468 (print version) Registration No.: EV 4528/12

mailto:juraj.stefanovic@paneurouni.com
http://www.paneurouni.com/
http://www.e-s-r.org/
http://www.sski.sk/
http://www.paneurouni.com/ITA
http://www.e-s-r.org/

 Information Technology Applications

1

Contents

Editorial

THE PROGRAMMABLE VIRTUAL MODEL OF THE MECHATRONIC SYSTEM

USING NX 12 ENVIRONMENT

Filip Žemla, Ján Cigánek .

3

HIGH THROUGHPUT OPEN-SOURCE IMPLEMENTATION OF WI-FI 6

AND WIMAX LDPC ENCODER AND DECODER

Tomáš Páleník, Viktor Szitkey

15

NEURAL-GENETIC CONTROL ALGORITHM FOR TWO-LINK ROBOT

Slavomír Kajan, Štefan Kozák .

33

COMPARISON OF FIRST-PRINCIPLES

AND EXPERIMENTAL VEHICLE MODELS

Dávid Mikle, Juraj Račkay .

43

SIMULATION-BASED MODEL CONTROL

USING STATIC HAND GESTURES IN MATLAB

Slavomír Kajan, Jozef Goga .

53

DETECTION OF PARKINSON’S DISEASE WITH MACHINE LEARNING SUPPORT

Zuzana Képešiová, Štefan Kozák, Eugen Ružický, Alfréd Zimmermann, Richard Malaschitz

63

List of Reviewers

73

 Information Technology Applications

2

Editorial
.

Dear authors, dear readers,

 introducing to you with a delay the next issue of our journal, Contributions provide new insights

into the research, development and application of new methods and algorithms in both theoretical

but especially in the practical domain. This issue focuses on the presentation of advanced methods

and techniques in the broad field of applied computer science, new communication technologies,

automotive mechatronics, virtual reality and the application of artificial intelligence for early

detection of neurodegenerative diseases based on real data.

 Thank you for your contributions, we welcome your latest research results and solutions and we

look forward to further collaborations.

prof. Ing. Štefan Kozák, PhD.

ITA Editor-in-Chief

 3

International Journal Volume 11, Number 2, December 2022

Information Technology Applications (ITA)

THE PROGRAMMABLE VIRTUAL MODEL OF THE

MECHATRONIC SYSTEM USING NX 12 ENVIRONMENT

Filip Žemla, Ján Cigánek

Abstract:

The paper deals with the design and implementation of the programmable virtual 3D model of the

mechatronic system. The paper offers an analysis of a programmable logic controllers, as well as an

overview of Industry 4.0, specifically an analysis of the concept of a digital twin and technologies for

the creation of a digital twin. The design of the digital twin of the mechatronic system consists of two

steps. The first step is the creation of the virtual 3D model, the second step is the creation of an

interactive communication between the virtual model and programmable logic controller. The

resulting digital twin of the high bay warehouse is compared with a real laboratory model. The task

is to design and create a digital twin based on a real model that will simulate its behavior as accurately

as possible.

Keywords:

PLC, digital twin, Industry 4.0, virtual 3D model, NX 12, mechatronic system.

ACM Computing Classification System:

Information systems, Information Systems applications, Process control systems.

Introduction

Nowadays, we can observe that the term digital twin is becoming more and more popular in

all industries. We can find its use when solving problems in real objects or processes. In the standard

commissioning of automated machines and equipment, there are usually many unexpected and un-

foreseen problems that extend the time of commissioning with increasing costs. This is because the

PLC programmer can only fully verify the program after the technology is physically connected.

The digital twin solves problems such as eliminating errors in the control software, mechani-

cal damage during the implementation of the device or late detection of the problem in the earlier

stages of the project. It allows the programmer to verify the functionality of the prototype, which was

created by another designer. The programmer can also test the control program and the functionality

of the entire system already in the development phase and have the program tuned during commis-

sioning itself. This will prevent mechanical damage and further downtime caused by traditional com-

missioning.

A digital twin is a real-time virtual representation of a physical object or process. Using a

digital twin, we can observe the movement of products and other objects in real time on a virtual

model. They can then be analyzed and the best possible solution evaluated. The virtual model of the

device can be used by anyone, anywhere in the world. Through it, the user can monitor individual

processes of automated lines and detect errors remotely without being physically present. A digital

twin can be a digital replica of an object in the physical world, e.g. a production line, a car, or even

larger objects like buildings, entire cities. There are many applications and use cases for the digital

twin, it is a very active area of research and innovation.

 Filip Žemla, Ján Cigánek

4

Programmable Logic Controller (PLC) is considered as a fundamental component of automa-

tion in industry. PLC is an industrial digital computer that is relatively small and adapted to control

production processes in real time, such as production lines, robotic devices or any activity requiring

high reliability [1]. Looking at the function of a PLC, it can be defined as a device that receives

multiple inputs or signals from a physical system. It can receive information from connected sensors

or input devices, then process them and trigger outputs based on pre-programmed parameters. Such

devices can be networked with other PLC and SCADA systems [2].

1 Industry 4.0 and Digital Twin

The industry is currently exposed to a significant technological change called Industry 4.0.

This term was first mentioned by the German Federal Government in 2011. It arose as a result of the

development of Internet and the idea of connecting the systems of the physical real world with the

virtual world. The main task of the change is to achieve fully automated production, capable of au-

tonomously adapting to external influences, such as changes in demand. This can be achieved by

connecting all production equipment in one global network with autonomous exchange of infor-

mation [3].

Industry 4.0 or the fourth industrial revolution represents a global trend in automation and

industrial processes, with the use of modern intelligent technologies, towards the exchange of data

in production processes and the complete automation of machines. Industry 4.0, sometimes referred

to as IIoT (Industrial Internet of Things) or intelligent manufacturing, combines physical production

and operations with intelligent digital technology, machine learning and big data. It creates a more

integrated and better connected ecosystem for companies focused on manufacturing and supply chain

management. The term Industry 4.0 also includes four key aspects: cyber-physical systems (CPS),

Internet of Things (IoT), Internet of Services (IoS) and smart factories.

CPS represent a significant evolutionary step. They are physical devices with built-in tools

for digital data collection in real time, their processing and distribution, they are interconnected using

the Internet. The combination of CPS, high-performance software and special user interfaces, inte-

grated into digital networks, creates a completely new world of system functionality.

IoT is a concept referring to the connection between physical objects such as vehicles, ma-

chines and other objects with embedded electronics, software, sensors connected to a network. IoT

enables the collection and exchange of data. Connected objects can be controlled remotely, through

existing network infrastructures, and create opportunities for further direct integration of the physical

world into computer systems.

The Internet of Services (IoS) represents an infrastructure using the Internet as a medium for

offering and selling services. As a result, services become tradable goods. IoS provides the business

and technical basis for advanced business models focused on the provision and use of services.

A smart factory uses technologies, solutions and approaches within Industry 4.0. It is a con-

cept derived from IIoT, assuming the production environment as a fully automated and intelligent

network of systems, enabling the management of equipment, machines and logistics chains in the

production plant, without human intervention. A smart factory is a place where data is exchanged

not only between production tools and machines, but also between all elements in the production

technology chain.

Virtual Commissioning (VC) is the simulation and modeling of the production system for the

purpose of developing and testing the system before physical commissioning. Engineers simulate

processes before turning on the physical system, allowing them to verify that everything is working.

VC uses a virtual model, which is an accurate 3D simulation of mechanical, electrical and control

systems, to verify the physical functions of the system before implementation.

The Programmable Virtual Model of the Mechatronic System Using NX 12 Environment

5

VC technology and applications have been developed to significantly reduce or even elimi-

nate the physical process, shorten the required time and ultimately deliver significant cost savings.

VC does not have to wait for all the hardware to start up. VC can begin before the programmer has

any hardware available. Because all the components exist in the software model, engineers can start

testing in the digital space.

Today we use two virtual commissioning methods, Software in Loop (SiL) and Hardware in

Loop (HiL). Both methods work with a virtual model of the device, as a copy of the real device on

which the control program is tested. Both methods result in real-time simulation. The virtual model

simulates all processes and thus generates input and output signals, which are subsequently converted

into digital and analog form and transferred to the control program [4].

In the Hardware in Loop (HiL) method, the automated device is converted into a virtual form.

A real PLC station with appropriate communication interfaces is subsequently used to control this

model. This method allows the programmer to verify the control program in a complex and precise

way, and with its results to be closer to reality. The disadvantages of this method are the need for real

hardware, i.e. PLC with the associated I/O interface and PC with a running virtual model.

The principle of the Software in Loop method is based on simulations of both the virtual

device and the controlling PLC. The developed control algorithms run in a simulation environment

on the development computer, in simulation or in real time, depending on the requirements. The

programmer thus can test the control program without the need for additional hardware. It allows

testing the software before initializing the hardware prototypes, which significantly speeds up the

development cycle.

Over the years, the definition of a digital twin has evolved, but the basic idea has remained

the same: a dynamic virtual software-generated representation of the corresponding physical systems

and processes. Since the introduction of this concept, the amount of data and information that can be

transferred between products has increased. With a virtual model, it is possible to simulate the be-

havior of various states and thus evaluate its performance. These models can be simplified so that

only the geometry or other characteristics match, thus reducing their size and speeding up the simu-

lation calculation. Such simplified models allow to simulate complex systems and their behavior in

real time, with acceptable computing power [5].

There are several software tools from different manufacturers for virtual commissioning or

digital twin. The leading manufacturer of simulation software is the Siemens company, with its prod-

ucts NX Mechatronics concept designer and Tecnomatix Process Simulate, which contain all the

necessary tools for the complex simulation requirements of the project. Another suitable environment

for virtual commissioning is Emulate 3D from Rockwell Automation.

2 Case Study

For the practical part of the paper, a kit from Fischertechnik called Automated High-Bay Ware-

house was chosen (Fig.1). This is a laboratory model in which a pallet with a workpiece is automatically

transported by a conveyor and placed in a position in the warehouse using a manipulator. The model

consists of three main parts: a conveyor with a color sensor, a manipulator that moves in 3 axes, and a

warehouse where pallets with workpieces are stored. There are also limit switches, sensors and encoders

that protect the manipulator from mechanical damage.

 Filip Žemla, Ján Cigánek

6

Fig.1. Laboratory model of High-bay warehouse.

VC of our high-bay warehouse was carried out using several environments: NX 12 and its MCD

module with the running virtual model; TIA Portal V15.1 to configure individual PLC modules of Sie-

mens S7-1500, and to create the control program for the high-bay warehouse and its visualization on

HMI panel KTP700 Basic PN from Siemens; S7-PLCSim Advanced V3.0 environment to create a vir-

tual instance of the PLC S7-1500 and to upload the created control program from the TIA Portal.

A. Creation of virtual 3D model

For creating a 3D model, we chose the NX 12 program from Siemens in the CAD module. The

NX program is Computer-aided design (CAD), Computer-aided manufacturing (CAM) and Computer-

aided engineering (CAE) software for detailed modeling of machines, from individual parts to large as-

semblies. In addition to modeling, it is possible to perform calculations, simulations, analyses, creation

of drawing documentation, programming, etc. All these areas are interconnected, which increases the

efficiency of the entire solution [6].

Fig.2. Virtual model of High-bay warehouse.

When creating the 3D model, we used real data from the Fischertechnik kit. With the help of a

caliper, we obtained all characteristic and necessary dimensions by measuring, in order to maintain pro-

portionality between the real model and the virtual model. We tried to simplify the individual details of

the kit as much as possible, in order to speed up the subsequent simulations and simplify the modeling

of the virtual model.

The Programmable Virtual Model of the Mechatronic System Using NX 12 Environment

7

Our 3D model consists of several parts, which we will later combine into a single unit. The basic

element is the manipulator, composed of three parts. The first part is the base that allows the manipulator

to move up and down along Y axis. The other two parts of the manipulator are used for loading or un-

loading the pallet. One part is used for picking a pallet, thanks to which the manipulator can move for-

ward and backward along Z-axis.

Another separate part related to the manipulator is the rail along the X axis. This is used to allow

the manipulator to move left and right.

An equally important element is the warehouse, which we modeled as a separate component. In

the warehouse, it was necessary to model 9 positions for pallet storage.

The last larger part is the conveyor, used to transport the pallet for the manipulator. The last step

was the modeling of the limit switches and the sensors located on the conveyor, which consist of two

separate components. In NX 12 environment, we combined individual functional elements and compo-

nents into the resulting virtual model.

B. Creation of digital twin

The creation of the digital twin also took place in the NX 12 environment, in the Mechatronics

Concept Designer (MCD) module. We uploaded the completed 3D CAD model of high-bay warehouse

to the MCD application. We tried to revive the individual functional elements of 3D model in a virtual

environment. MCD software is a module of the NX program that enables 3D modeling and interactive

simulation of automation-related multi-body physics concepts. It allows creating a mechatronic 3D CAD

model of an existing device, with the aim of mapping the physical and kinematic properties of the device.

The simulation technology in MCD software is based on the game physics engine, based on simplified

mathematical models, bringing the physical behavior of the real world into the virtual world.

The first step of the conversion was defining the movement coupling of individual functional

elements. We assigned physical properties to the individual elements, simulating the real behavior of the

body (option to choose manual assignment of the object's weight, location of the center of gravity, mo-

ment of inertia in individual axes or the choice of automatic assignment of values, based on the 3D model

of the given part). Collision properties defining the mutual interaction of the bodies had to be assigned

to the individual bodies.

The high-bay warehouse model contains four end sensors, two light sensors and drives ensuring

movement in three axes, and the corresponding encoders. For all these elements it was also necessary to

create a simulation in the virtual reality. For rectilinear movement of the conveyor, Transport Surface

function was used, which will create a surface allowing objects to be moved in the selected direction and

speed. Speed Control function was used to simulate the manipulator drive in all directions. Next, we

created a simulation of the individual sensors. The Collision Sensor function was used for two light

barriers on the conveyor to detect the intersection of the green beam with another object.

Fig.3. Light sensor (barrier) of virtual model.

 Filip Žemla, Ján Cigánek

8

It was also necessary to create collision sensors for the end sensors placed on the manipulator.

These sensors detect the presence of the manipulator in the extreme position and prevent mechanical

damage or collisions. Collision Sensor function ensures that the manipulator stops if it touches the limit

switch.

Fig.4. Limit switch of virtual model.

The laboratory model contains two encoders on the X and Y axes, which ensure the mapping of

the current position of the manipulator. To simulate the encoders, we used Position Sensor function to

measure the value of the displacement of the body on the given axes. The value of the encoders must be

zero when the limit sensors are switched on, because the limit switches serve as reference values.

C. Connection to digital twin

In order to connect the virtual PLC and our digital twin, it was necessary to define the signals that

ensure the connection between the virtual model and PLC. The creation of signals for PLC took place in

NX 12 environment, in MCD module. Individual signals were created using Signal function. The output

from PLC is the input in MCD, and conversely the input from PLC is the output in MCD. The names of

the signals should be identical in MCD and in TIA Portal, as the Signal Mapping function will automat-

ically allow to map the signals from MCD with the signals from PLC.

Bool or Double signals created in this way must then be connected to the corresponding functions

controlling the functional elements of the laboratory model. We functionalized this connection using

Runtime Expression tab, in which the behavior of the model can be defined during the simulation run.

The signal connected to Speed Control function can control its activity, speed value, acceleration, simu-

lating load conditions in the X, Y and Z axes.

To make the sensors functional during the simulation, Runtime Expression was used again. We

chose the "triggered" option, because when the light beam is crossed or the limit switch is pressed, the

signal value changes. Thus, we will be able to send the value from the sensor to the PLC.

D. Creation of PLC algorithm

The creation of the control algorithm took place in TIA Portal V15.1 environment. When creating

a project, it is necessary to select correct PLC module and CPU type. Our kit consists of an S7-1500

series PLC with a CPU 1516-3 PN/DP from Siemens. Digital and analog inputs and outputs from a real

lab model had to be added to CPU.

We also used memory variables to start specific sequences or part of the program, respectively to

store a value. PLC program is stored in organizational blocks (OB). The organizational block forms the

interface between the operating system and the program that is called cyclically by the system.

The Programmable Virtual Model of the Mechatronic System Using NX 12 Environment

9

At first, we created "Safety" OB, which serves to safely stop the drives in extreme positions and

prevents mechanical damage of individual parts. Here we used information from limit switches and pulse

counting from encoders on individual axes. We created the algorithm for the reference of the manipulator

in OB "Main", which ensures the introduction of the manipulator to the reference extreme position on

the X and Y axis, and the initialization of individual auxiliary variables.

The automatic mode is used to automatically place the pallet in the warehouse. After placing the

pallet on the conveyor and selecting a specific position in the warehouse using HMI panel, the manipu-

lator will automatically store the pallet. It means the transfer of the pallet from the conveyor to the desired

position in the warehouse. If the given position is already occupied, the manipulator unloads (moves) the

pallet from the selected position to the conveyor.

The selection of the position is made through HMI screen (Fig.5), where the user can select one

of 9 positions using a button. The user can thus decide which position he wants to load or unload. Loading

or unloading from the position by the manipulator depends on the color of the button. If the color of the

button is green, the user can store the pallet in the given position. If the pallet is red, it can be removed

from the given position. We have created an OB called "HMI to PLC" for data transfer after pressing a

button from HMI to PLC. Now we can identify whether the user wants to unload or store the pallet in

the selected position.

Fig.5. HMI for automatic mode.

After choosing the position, it is necessary to create an OB to map positions in the warehouse and

to enter instructions for the manipulator: to load or to unload. For individual rows and columns, it was

necessary to find out their individual coordinates. When moving the manipulator to a specific position,

we use encoders to monitor the value on the X and Y axes.

In order to match the value in the virtual model and the value from the encoder, it was necessary

to convert the measured pulses to milimetres. For the calculation, we used the length of the movement

path in the X and Y axis, and pulses count of the real encoders. When the manipulator starts to move, we

add or subtract value in the auxiliary variable according to the direction of movement, which we deter-

mine using the input signals.

In the case of the virtual model, we used Position Sensor function, which automatically measures

the displacement value of the manipulator. At the start of the simulation, it was necessary to set the

manipulator, to the starting positions, in order to activate the limit switches.

 Filip Žemla, Ján Cigánek

10

We send the value of the position from the virtual encoder directly to the PLC, using the connec-

tion of the signal and the auxiliary variable.

Next OB serves for unloading or loading a pallet to the selected position. The algorithm consists

of four consecutive steps: a) arrival of the manipulator in front of the correct position, b) insertion of the

manipulator into the warehouse, c) displacement of the manipulator along y axis, d) extension of the

manipulator from the warehouse.

The manual mode is used for manual control and testing of the functionality of the manipulator,

conveyor and individual functional elements. We can track the position of the manipulator on X and Y

axes and we were able to map individual positions in the warehouse and to create an automatic mode.

We can test the functionality of the safety stop of the drives, if the limit switch is turned on or if the

position of the manipulator exceeds a critical limit. The movements of the manipulator in all directions

are controlled using the buttons on HMI. In manual mode, the manipulator can be set to the reference

position using the "Initialize" button.

Fig.6. HMI for manual mode

E. Virtualization of PLC

PLC virtualization was executed in PLCSim Advanced V3.0, which allows creating a PLC in-

stance replacing a real PLC. When creating a virtual PLC, in the user interface (Fig.7) we selected the

PLCSIM option in Online Access option. We created an instance called my_PLC. In PLC type menu,

Unspecified CPU 1500 option was selected, and then Start button was pressed. This step creates an in-

stance with the specified name that represents the created virtual PLC.

Uploading a program created in TIA Portal environment to a PLC instance is the same as upload-

ing to a real PLC, using Download to device option in TIA Portal. The dialog window offers the option

of choosing the device to which the program should be recorded. In the line Type of the PG/PC interface

we selected the bus type PN/IE, in the next line PG/PC interface we chose PLCSIM as the connection

adapter. The last setting in Connection to interface/subnet line was Direct at slot '1 X1' option. After

configuration, using Start search button, we found the created instance called my_PLC. After selecting

the given device and pressing the load button, the program will be uploaded to this instance.

The Programmable Virtual Model of the Mechatronic System Using NX 12 Environment

11

Fig.7. PLCSim Advanced.

F. Connection of virtual model and PLC

The connection of the signals of the virtual model and the signals in the PLC (running in PLCSim

Advanced) was realized through the MCD module of NX 12 environment. In Automation tab, we se-

lected External signal configuration function, which is used to upload PLC signals to MCD. In this dialog

box, we selected PLCSIM Adv tab.

After selecting the PLC instance, all input and output signals of the virtual PLC are displayed in

the lower part of the dialog window. When choosing IOMDB in Show line, memory type tags (auxiliary

variables) will also be displayed.

Signal mapping function (Fig.8) was used to match the signals from PLC to the signal of the

virtual model in MCD. In Signals section, the signals created in the virtual model are displayed on the

left side, and the imported signals from the virtual PLC are on the right side.

 Filip Žemla, Ján Cigánek

12

Fig.8. Signal connection between virtual model and virtual PLC.

 To create a connection between individual signals, it is necessary to select one signal from the

right side and its corresponding signal from the left side. We connect both signals using the central button.

Several conditions must be met when connecting signals. The signals must be of the same data type and

opposite I/O type. Therefore, the signals for controlling the drives were created as Input, and the sensor

signals were defined as Output.

G. Simulation results

Starting the virtual model in NX MCD environment is possible only after starting the virtual PLC

with the downloaded program. In NX, we launch the virtual model using the Play button. To control the

high-bay warehouse, it is necessary to start the virtual HMI touch panel in TIA Portal. We verified the

functionality of the virtual model using the manual mode, where we tested the control of individual ma-

nipulator drives. The course of the simulation was smooth and the behavior of the virtual model corre-

sponded to the behavior of the real kit.

Finally, we verified using manual mode the functionality and control of individual drives in all

axes of the manipulator, as well as conveyor drives. After verifying the functionality of all elements, a

successful manipulator reference was made.

Using the automatic mode, we tested the loading of the pallet and its subsequent unloading from

a random position in the warehouse (Fig.4).

The Programmable Virtual Model of the Mechatronic System Using NX 12 Environment

13

After testing the functionality of the virtual model, we were able to compare the real and virtual

model. In the case of comparing the functionality of PLC algorithm on a real and virtual model of a high-

bay warehouse, we evaluate the behavior as identical. Individual positions in the warehouse were served

by the manipulator as expected and without any problems in both models. All functional elements in the

virtual model corresponded to the behavior in the real kit.

Conclusion

The realization of the digital twin was preceded by the creation of a 3D model. We created

the virtual model in the CAD module of NX 12 environment. We tried to simplify the individual

details of the virtual model as much as possible, in order to speed up subsequent simulations and

simplify modeling. Subsequently, we uploaded the created 3D model to MCD module, where the

conversion to a digital twin was executed. We tried to bring the individual functional elements of the

virtual model to life in a virtual environment. It resulted in a programmable virtual model of the high-

bay warehouse, where its inputs and outputs corresponded to the real kit.

PLC control algorithm consists of Automatic mode and Manual mode. With the help of the

created virtual model and PLC program, a virtual commissioning was carried out, which verified the

functionality of the model and the PLC algorithm. After the testing, we agreed the behavior of the

virtual model and the real kit.

The virtual model of the high-bay warehouse could be improved by a more complex version

of 3D model. At the same time, by adding more components to the virtual model, we can create more

complex systems, for example by connecting with a robotic arm and other Fischertechnik kits to

create an automated line in the virtual reality.

Acknowledgement

This work has been supported by the Slovak Grant Agency VEGA 1/0107/22, KEGA 039STU-

4/2021 and Scientific Grant APVV-21-0125.

References

[1] A. Goel, “40 Important PLC Projects for Engineering Students”, Engineering, 2018.

https://engineering.eckovation.com/plc-based-final-year-projects/

2 T. Achyut, “PLC – Architecture/Hardware”. PLCAUTONETICS, 2020.

https://www.plcautonetics.com/plc-architecture/

[3] J. Kruger, “Why are there still so many jobs?”, Siemens, 2020. https://new.sie-

mens.com/global/en/company/stories/industry/why-are-there-still-so-many-jobs.html.

[4] J. Dzinic, Y. Charlie, „Simulation-based verification of PLC programs”,

Department of Signals and Systems, Chalmers University of Technology. 2013.

5 M. Grieves, “Digital Twin: Manufacturing Excellence through Virtual Factory Replication”.

ResearchGate, 2015. https://www.researchgate.net/publication/275211047_Digital_Twin_Manufac-

turing_Excellence_through_Virtual_Factory_Replication.

[6] B. Lyndon, “Machine design software generates open source Mechatronics program code”,

Automation, 2003.

 Filip Žemla, Ján Cigánek

14

Authors

Ing. Filip Žemla

Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava, Slovakia

filip.zemla@icloud.com

Currently a student of doctoral studies at Slovak University of Technology

in Bratislava. The main focus of his studies is oriented to virtualization

and optimalisation of modern manufacture processes. His main skills

are SCADA systems, database systems and front-end programming.

Ing. Ján Cigánek, PhD.

Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava, Slovakia

jan.ciganek@stuba.sk

He was born in 1981 in Malacky, Slovakia. He received the diploma and PhD.

degree in Automatic Control from the Faculty of Electrical Engineering

and Information Technology, Slovak University of Technology (FEI STU)

in Bratislava, in 2005 and 2010, respectively. He is now Assistant Professors

at Institute of Automotive Mechatronics FEI STU in Bratislava. His research

interests include optimization, robust control design, computational tools,

SCADA systems, big data, and hybrid systems.

15

International Journal Volume 11, Number 2, December 2022

Information Technology Applications (ITA)

HIGH THROUGHPUT OPEN-SOURCE IMPLEMENTATION

OF Wi-Fi 6 AND WiMAX LDPC ENCODER AND DECODER

Tomáš Páleník, Viktor Szitkey

Abstract:

This paper describes the design and C99 implementation of a free and open-source Low-Density Pari-

ty-Check (LDPC) codes encoder and decoder focused primarily on the Quasi-Cyclic LDPC (QC-

LDPC) codes utilized in the IEEE 802.11ax-2021 (Wi-Fi 6) and IEEE 802.16-2017 (WiMAX) stand-

ards. The encoder is designed in two variants: the first one universal, the other a minimal memory us-

age design. The decoder provides a single- and multi- threaded implementation of the layered single-

scan min-sum LDPC decoding algorithm both for floating point and fixed-point arithmetic. Both en-

coder and decoder are directly callable from MATLAB using the provided MEX wrappers but are de-

signed to be simply used in any C project. A comparison of throughput and error performance with the

recent commercial closed-source MEX implementation of an LDPC encoder and decoder introduced

in MATLAB R2021b Communications Toolbox is provided. Source code portability to alternative non-

x86 architectures is facilitated by using only the standard C99 constructs, GNU tools, and POSIX li-

braries. The implementation maintains low-memory requirements, enabling its deployment in a con-

strained-architecture in the context of Internet of Things. All source codes are freely available on

GitHub under a permissive BSD license.

Keywords:

Layered decoding, LDPC direct encoding, MEX, min-sum decoding, QC-LDCP codes.

ACM Computing Classification System:

Mathematics of computing, Mathematical software, Mathematical software performance.

Introduction

After the introduction of the QC-LDPC codes in [1] and the desired direct-encoding [2] cal-

culated using the sparse parity check matrix H without needing the code generator matrix G, QC-

LDPC codes have been an integral part of modern communication standards for some time now.

This ranges from IEEE 802.16 [3], through IEEE 802.11ax [4,5], DVB-S2 [6] up to the latest 5G

3GPP Release 17 TS 38.212 [7], and even the wired networking Ethernet IEEE 802.3 standard [8].

Because of their faster decoding, the ultra-high speed 200 Gbps and 400 Gbps IEEE 802.3-2018

prescribe the use of Reed Solomon (RS) codes [9] to fit the strict latency constraints. Even though

the RS codes don’t reach the exceptional near-capacity-limit error performance of LDPC, the re-

search in this complementary area is still ongoing [10]. Arguably the most sophisticated LDPC

designs are presented in the CCSDS specifications, such as [11] and [12], with intense research

activity ongoing: Recent papers [13], [14], [15], propose novel hardware encoders, for the CCSDS

standard QC-LDPC codes, achieving acceleration primarily by restructuring encoder structure and

utilizing parallelism. [16] provides a comparison of several hard- and soft-decision decoding algo-

rithms for the CCSDS defined (128512, 64256) QC-LDPC code,

 Tomáš Páleník, Viktor Szitkey

16

while [17] deals with potential energy saving in a satellite link. [18] describes how the Au-

tomorphism Ensemble Decoding (AED) can be enabled for QC-LDPC codes to improve error per-

formance for codes with shorter N (128 to 256) used in Wi-Fi, 5G, and CCSDS specifications and

[19] compares the Belief propagation, Min-Sum and Neural Normalized Min-Sum (N-NMS) de-

coding performance in the context of line product codes (LPC) also defined by the CCSDS. [20]

deals with modifying existing LDPC codes to incorporate desired run length properties and [21]

presents a mathematical framework for constructing QC-LDPC codes with desired girth, providing

examples based on the CCSDS-defined protographs.

In any case, the LDPC codes have evolved to become ubiquitous in almost all broadband

wireless technologies. Implementations of encoders and decoders are also plentiful [22] - [26], with

[27] giving an exhaustive overview of even more. These are all, however, hardware implementa-

tions: either ASIC designs intended to be integrated into modems, or FPGA-based. Complementing

these are pure software implementations available at GitHub: [28] provides universal encod-

er/decoder C++ implementations, but doesn’t include the practical, standard-specified H matrix

designs. [29] provides the IEEE802.11 codes and separate MATLAB and C encoder/decoder im-

plementations. [30] focuses on CCSDS LDPC codes and provides a MATLAB implementation. In

[31] a C++ implementation defines a SIMD-acceleration using the AVX-512 vectorized arithmetic

focused on the DVB-S2 and DVB-T2 standard. [32] provides a MATLAB implementation for the

5G New Radio TS38.212 encoder and decoder. [33] is an older C implementation focused on edu-

cation with no standard H matrix designs, and [34] describes the results for a SIMD-accelerated

x86-specific C++ encoder/decoder implementation using the Intel compiler and the optimized Math

Kernel Library with focus on the CCSDS and DVB-S2 LDPC codes.

The common denominator of all these implementations is the lack of integration of fast

C/C++ code (if available) with MATLAB. This integration is important, since it is impractical to

write whole simulations in C or maintain two parallel (and potentially functionally different) ver-

sions for MATLAB and C/C++. The obvious solution would be the utilization of fast C/C++ code

in MATLAB by implementing MEX-file wrappers that allow calling such a method directly from

MATLAB. Such implementation exists as a commercial closed-source product and is part of the

Communications Toolbox. In fact, the LDCP codes in MATLAB have a history on their own: the

first introduction of LDPC in MATLAB came in 2007 in the form of the dvbs2ldpc() function,

still available today. In 2012 the comm.LDPCDecoder and comm.gpu.LDPCDecoder system

objects were introduced in R2012a [35], with the former now deprecated and replaced by the uni-

versal ldpcDecode() function, complemented by ldpcEncode(), both being new improved

and optimized implementations introduced only recently in R2021b [36]. These come with the abil-

ity to expand practical QC-LDPC prototype matrices to sparse H matrices, but the task of obtaining

the prototype matrices is left to the user. The implementations are available as binary MEX mod-

ules only, so it is hard to infer what advanced optimizations were made. Furthermore, for a re-

searcher, who would like to test potential modifications to the encoding/decoding algorithms, while

evaluating practical LDPC codes used in modern standards, such closed-source implementations

are of little use.

This is where our implementation comes to play: it provides a relatively fast C99 implemen-

tation of a QC-LDPC encoder and decoder that can be integrated into any C project, directly con-

taining practical LDPC codes utilized in the IEEE802.11ax-2021 [4] (actually defined in the earlier

IEEE802.11-2020 specification [5]) and IEEE 802.16-2017 standards, while also providing MEX

wrappers and supporting functions for seamless MATLAB integration for statistical evaluation of

waterfall curves. Everything is available as completely free and open source code under the permis-

sive BSD license. To facilitate portability, and even a potential ARM platform compatibility, no

external libraries, such as the optimized Intel MKL, or ISA-specific constructs, such as intrinsics,

were used.

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

17

The rest of the paper is organized as follows: the next section contains a brief recap of the

QC-LDPC codes design along with some important specific parameters of the practical codes used

in IEEE802.11ax and IEEE802.16-2017. The second section recaps the direct encoding algorithm

and the fourth describes the two encoder implementations: one universal and another designed with

minimal memory requirements in mind. These can be switched at compile-time. The next section

then recaps the design and describes our implementation of the layered single-scan min-sum de-

coder algorithm, while the sixth section provides some thoughts on a fixed point arithmetic decoder

design. The sixth section provides an error performance evaluation in the form of waterfall curves,

along with the comparison of throughput of various decoder setups in contrast to the existing

MATLAB Communications Toolbox implementation. The last section concludes the paper.

1 LDPC Codes in Modern Standards

Discovered by Gallager [37], the LDPC codes are linear block codes (LBC) with basic pa-

rameters [N, K] defined by their sparse parity check matrix H. The code generator matrix GK × N

can be derived from HM × N (defining: M = N – K and code rate R = K / N) , but it will unlikely be

sparse and therefore unsuitable for practical high-throughput encoding. The encoding using the G

matrix is, however, described very simply by multiplication of the data word – the vector i of

length K bits by G to obtain the codeword c of length N. For a systematic code, the systematic part

s of the codeword is a subvector of c equal to i. We may denote:

1 1 1 1 ,N K M K K N     = =  = c s p i G s i (1)

The sparsity of the large H matrix not only provides for the excellent error correction

properties of LDPC codes, it also allows for an efficient storage of H in memory: instead of using

an array of size M × N, only the indices of ones need to be stored. Throughout the rest of the paper

we will use n for the column index (also known as the variable node index in soft-decoding con-

text) and m for the row index of H (also known as the check-node index). Then for each n ∈ { 1, 2,

…, N } the set of row indices of ones in a given column of H may be called neighborhood of n and

denoted M(n) while for each m ∈{ 1, 2,…, M } the N(m) represents the set of column indices of

ones in a given row m. Any sparse binary matrix H can be stored in a memory efficient way as an

array of arrays M(n), or array of arrays N(m). The number of elements of g(m) = |N(m)| may be

called the degree of row m, while the symbol f(n) = |M(n)| denotes the degree of column n. For

practical irregular LDPC codes, the g(m) and f(n) are not constant over m and n, and their average

and maximum values are of interest.

b

b

b b b b

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

N

N

M M M N

−

−

− − − −

 
 
 

=  
 
  

P P P

P P P
H

P P P

 (2)

The subclass of practical QC-LDPC codes used in communications standards [3-5] was

deliberately constructed with such structure of the H matrix that allows for the encoding process to

be completely and efficiently implemented directly using H. As shown in (2), the very large binary

sparse matrix H is designed as a block matrix consisting of a grid of submatrices Pi,j of size Z × Z.

 Tomáš Páleník, Viktor Szitkey

18

Each of the submatrices may be a zero matrix or a permuted identity matrix, with the only allowed

permutation being a cyclic shift, resulting with Pi,j circulant and sometimes called a cyclic shift

matrix.

The constraints on Pi,j allow for a compressed representation of H in a form of a model

matrix Hbm of size Mb × Nb (denoting Mb = Nb – Kb) where each element Hbm(i, j) represents the

circulant permutation matrix Pi,j and N = Nb × Z, K = Kb × Z. By convention the value of Hbm(i, j)

equal to -1 represent a zero submatrix Pi,j, value 0 an identity submatrix, and any positive number

represents identity matrix circularly shifted by Hbm(i, j). The compressed Hbm matrices are then

directly specified by the standards with different model matrices defined for each codeword length

N, as in [5], or common structure for the largest value of N given along with a corresponding trans-

formation for all other supported values of N, as in [3]. In all cases the large sparse binary matrix H

is obtained from Hbm by expanding each element of Hbm to a square matrix of size Z. For both

standards of interest, the H matrices share further similarity: The Hbm can be further partitioned to

three submatrices as follows (using the notation from [3]):

1 (1)b b b b b b b b b b bM N M K M M M K M M K      −   = =   bm b1 b2 b1 b b2'H H H H h H (3)

In terms of submatrix indexing the submatrices Hb1, hb and Hb2’ may be defined as:

[0,1,..., 1;0,1,..., 1]b bM K= − −b1 bmH H (4)

[0,1,..., 1;]b bM K= −b bmh H (5)

2' [0,1,..., 1; 1,..., 1]b b bM K N= − + −b bmH H (6)

where hb is the first column of matrix Hb2. We use the a slightly mathematically imprecise indexing

starting at zero instead of one. We do this in order to be compatible with the indexing defined in the

standard [3].

The direct encoding algorithm further requires that the column vector hb has a special

structure containing two paired (equal) values in the first and last position and a single positive

value among the remaining positions. All other elements are set to –1 indicating later expansion to

zero matrices. This structure is required for the direct encoding described in later sections. Also

required is the structure of the submatrix Hb2’ , where two zero diagonals within an all –1 matrix in

Hb2’ translate to double diagonal expanded submatrix of H. Equation (7) shows the example struc-

ture of hb and Hb2’ for Nb = 24, Kb = 18 for the R = 3/4 QC-LDPC code defined in [3]:

6 6 6 1 6 5

0 1 1 1 1

1 0 0 1 1 1

1 0 0 1 1

1 1 1 0 0 1

1 1 1 1 0 0

1 1 1 1 0

  

 − − − −    
    
− − − −    

    − − −
 = =       − − − −    

    − − − −
    

− − − −     

b2 b b2'

0

80
H h H

0

 (7)

Both standards specify a set of supported code rates and codeword sizes that further influ-

ence the design of encoder and decoder implementation. Parameters for the IEEE 802.11ax stand-

ard are summarized in (Tab.1), while the IEEE802.16-2017 is summarized in (Tab.2).

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

19

Table 1. Data word size K, codeword size N, and expansion factor Z for the IEEE 802.11ax.

Word sizes divisible by 8 bits are shown in bold.

N(bit) Z(bit) K (bit)

R=1/2 R=2/3 R=3/4 R=4/5

648 27 324 432 486 540

1296 54 648 864 972 1080

1944 81 972 1296 1458 1620

It is important to note that different sections of the Wi-Fi 6 standard define several different

LDPC codes and that different versions of each standard may share some LDPC codes. In this sec-

tion we will deal with the codes defined in the IEEE 802.11-2020 [5], since these provide the long-

est codeword sizes and best error correcting capabilities. These are then also reused in the more

recent standard version IEEE 802.11ax-2021 [4].

As show in (Tab.1), all codeword lengths N are multiples of 8 bits. This is not true for all

data word sizes K. The expansion factor (or subblock size) Z is deliberately chosen to take on val-

ues 27, 54 or 81, clearly with the implementation of a hardware encoder in the form of specifically

designed ASIC circuit in mind. As discussed in later sections, this design choice will complicate a

memory optimized C implementation. In terms of alignment of bits to blocks easily fitting standard

C data types, a slightly better situation is with the IEEE802.16-2017 standard, shown in (Tab.2),

where all data words and all codewords fit the 8bit-in-a-byte storage. Also depicted are all the pos-

sible values of the subblock size Z. Starting at 24 and incrementing by 4 up to 96, 10 out of the total

19 values are divisible by 8, facilitating an optimized binary encoder implementation. Values 32,

64, and 96 enable further optimization by using wider native C types.

Table 2. Data word size K, codeword size N, and subblock size Z for the IEEE 802.16-2017 standard.

All data and codewords lengths in bits are multiples of 8. Only half of the Zs are divisible by 8,

while all data word sizes fit a 8bit-in-a-byte storage. Z factors divisible by 8 are show in bold.

N(bit) Z(bit) K (Byte)

R=1/2 R=2/3 R=3/4 R=4/5

576 24 36 48 54 60

672 28 42 56 63 70

768 32 48 64 72 80

864 36 54 72 81 90

960 40 60 80 90 100

1056 44 66 88 99 110

1152 48 72 96 108 120

1248 52 78 104 117 130

1344 56 84 112 126 140

1440 60 90 120 135 150

1536 64 96 128 144 160

1632 68 102 136 153 170

1728 72 108 144 162 180

1824 76 114 152 171 190

1920 80 120 160 180 200

2016 84 126 168 189 210

2112 88 132 176 198 220

2208 92 138 184 207 230

2304 96 144 192 216 240

 Tomáš Páleník, Viktor Szitkey

20

2 QC-LDPC Direct Encoding

The special structure of the H matrix was designed to allow for the direct encoding algo-

rithm where the encoding of a systematic code uses the H matrix instead of the code generator ma-

trix G. For a practical C encoder implementation the model matrix Hbm is actually used, so the

large sparse binary H matrix, or even permutation submatrices Pi,j are never actually stored any-

where in memory. Since the multiplication of some subvectors of i of length Z by matrix Pi,j is

identical in result to cyclic shift, the actual operation to implement as a building block of the en-

coder is the cyclic shift of subvectors of size Z bits by Hbm(i, j) positions. The direct encoder algo-

rithm originally introduced in [38] and described in sufficient detail also in [3] can be summarized

as follows:

The information block i (also known as systematic vector s) is divided into Kb blocks of Z

bits. The grouped i can be denoted as a matrix u, where each element ui is a column vector:

0 1 1[]b

b

Z K

Ku u u


−=u (8)

1 (1) 1[]Ti iZ iZ i Zu s s s+ + −= (9)

The parity sequence p is calculated in blocks of Z bits directly using the matrix Hbm. Again,

the parity sequence p can be expressed as a matrix in terms of blocks, where each element vi is a

column vector Z bits long:

0 1 1[]b

b

Z M

Mv v v


−=p (10)

1 (1) 1[]Ti iZ iZ i Zv p p p+ + −= (11)

The slightly nonstandard notation for vectors ui and vi is used here in order to preserve notation in

[3]. The encoding is divided into initialization and recursion. First the initialization is defined as

follows:

b b

b

1 1
1

0 (,) (,)

0 0

M K

y K i j j

i j

v u
− −

−

= =

 
=  

 
 bm bmH HP P (12)

Where Hbm(i, j) is an element of the (potentially scaled) model matrix Hbm, PHbm(i, j) represents the

circulant permutation matrix, and multiplication by PHbm(i, j) implements the cyclic shift operation

on subvector uj. The element Hbm(y, Kb) is the only nonnegative element of the subvector hb out-

side of the paired values, as shown in the example in (7) with Hbm(y, Kb) = hb(2) = 80. Note that the

value of y is different for each Hbm and must be found on-the-fly by the encoder. The inverse per-

mutation P-1 is just a cyclic shift in the opposite direction. All addition/sum operations are per-

formed over GF(2).

After initialization and successful calculation of v0, the encoder proceeds with itera-

tion/recursion, finding the remaining parity subblocks vi:
1

1 (0,) 0 (0,)

0

, 0
b

b

K

K j j

j

v v u i
−

=

= + =bm bmH H
P P (13)

1

1 (,) 0 (,)

0

, 0
b

b

K

i i i K i j j

j

v v v u i
−

+

=

= + + bm bmH H
P P (14)

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

21

Since the sums terms in (12):

1

(,) b

0

, 0... 1
bK

i i j j

j

u i M
−

=

 = − bmH
S P (15)

are calculated during the initialization and reused during the iteration, it is advantageous to store

their values for reuse. Since the elements of Hbm equal to -1 expand to all zero P submatrix, a mul-

tiplication by such a PHbm results to a zero term in sums and may be safely skipped in the imple-

mentation.

3 C99 Encoder Implementation

The mathematical definition of the encoder given in the previous section determines the de-

sign of the final C algorithm, while the actual values of code parameters N, K, M, and Z play an

important role. This paper describes two encoder implementations. The first one is a universal array

implementation, that supports all combinations of the code parameters, but requires more memory,

since each bit is actually stored as a C array element (usually but not necessarily an 8bit-wide un-

signed char). The advantage is a simple code, where bit accesses are directly supported by an

array access operator. The disadvantage for actual transmission systems/modems processing blocks

of truly binary data is the necessity to expand the data inside the encoder by a factor of 8, so that

each bit is actually stored in a separate byte.

The second implementation is a bitmap (or packed-bits) encoder – a true binary encoder in

that it handles binary data blocks as bitmaps, and accesses bits within bytes by using the bitwise

operators. While it is possible to implement cyclic shifts even for a subblock of size Z defined in

the Wi-Fi standard {27, 54, 81}, these require non-byte aligned memory accesses that hurt perfor-

mance. This approach was tried and benchmarked, and the measured low throughput was then a

reason for not implementing the bitmap encoder for these values of Z. On the other hand, the Wi-

MAX standard provides several code parameters combinations, where all N, K, M, Z are divisible

by 8 (or by 16 and even 32 and 64) which allows for a clean and fast C implementation with mini-

mal memory requirements.

All encoder equations (12) - (15) were implemented directly, replacing the multiplication

Hbm(i, j). uj with a cyclic shift of vector uj by Hbm(i, j) bit positions and each addition with a bit-

wise XOR. The C language doesn’t directly support a construct that would access the underlying

ISA rotation instructions, so two linear shifts of a variable are called and combined with a bitwise

OR operator. This is one of the known drawbacks of the C language [39] and the task of compiling

the three related C operations into one rotation instruction is left to the compiler.

Since the encoding algorithm is defined in terms of blocks of bits of size Z, that can span

several bytes or multibyte words, array indexing and bitwise operators must be combined to im-

plement the circular shift that is the basis of equations (12) - (15). The principle of the memory

efficient bitmap encoder cyclic shift routine is demonstrated in (Fig.1), where three indices are de-

fined: the bit index IbBL within the block of size Z, the bit index within the word IbW and the index

IW of the word within the array. Since the array is stored in memory addressed in bytes, the byte

index IB denotes the byte offset from the start of the array. It may be a convenient, but not neces-

sary to set the word size to contain just one byte, making IW = IB. This choice is made in (Fig.1) for

the sake of example simplicity. Let wb denote the word size in bits.

Also depicted in (Fig.1), is the observation that the shift s can be conceptually divided into

two parts: the shift sw expressed in an integral number of words and the remaining shift of up to wb

– 1 bits. Shown for selected values of s = 3, 11, 19, all congruent modulo wb = 8, the resulting

 Tomáš Páleník, Viktor Szitkey

22

array elements, although placed on different array positions, are bitwise identical ([] denotes C

array indexing): Outs=11[1] = Outs=3[0] = Outs=19[2].

Fig.1. The array cyclic shift examples for word size wb = 8 bits, block size Z = 24 and selected shift

value s = 3; 11; 19. Indices are: index of the bit within the block IbBL, of the bit within the word IbW,

of the word IW in the array, and the byte offset from the start of the array IB (now same as IW)).

The arbitrary cyclic shift by s positions can be represented as s = sw . wb + sb where sw =

div(s, wb) is the partial rotation of the array in whole words (array elements) and sb = mod(s, wb)

the residual rotation in bits (using standard integer division and modulo operations). Clearly sb <

wb. This division serves the purpose of efficient implementation by a combination of two opera-

tions: First the whole array is shifted by sb bits in a way where two successive array elements are

combined together into a resulting array element using bitwise operations and where the last array

element is also used as the element preceding the first one. Then the rest of the shift of the array by

sw words is implemented by reshuffling whole array using modulo indexing. These two steps can

be combined together into a single scan of the input array. Algorithm A1 provides the resulting

algorithm implementing an arbitrary bit shift on an array where zw is the number of words in array,

and Z = zw . wb.

Algorithm A1:

sW = shift / wb ; //shift in words

sb = shift % wb ; //remaining bits

prevSW = A[ZW - 1] ; //previous word

for(i = 0 ; i < ZW ; i++){

j = (i + sW) % ZW ; //DST word index

curSW = A[i] ; //source word

hi = prevSW << wb - sb ;

lo = curSW >> sb ;

B[j] = hi | lo ; //bitwise OR

prevSW = A[i] ;

}

This algorithm is effective and works for any shift size s = 1to Z – 1. With the important

limitation of the block size Z equal to a multiple of the word size wb. This algorithm will therefore

be directly used for encoding half of the supported codeword sizes defined by the WIMAX stand-

ard, while being completely unsuitable for Wi-Fi 6.

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

23

4 Universal LDPC Decoder

In our LDPC decoder implementation, the algorithm choice was motivated by our efforts to

produce an ideally exact, or at least practically close approximation of the decoding results ob-

tained when using the widely popular but proprietary MATLAB decoder provided by the

ldpcDecode() function of the MATLAB R2021b Communications Toolbox . This determined

the algorithm choice to be the time proven min-sum algorithm defined in [40,41], which provides

high throughput and is a good approximation to the much more computationally demanding poste-

rior Log-Likelihood Ratio (LLR)-based Belief Propagation algorithm [42]. To save memory, the

single-scan version of the min-sum algorithm, as described in [43] was implemented, more specifi-

cally the layered version with faster convergence as described in [44]. Two versions of the decoder

were implemented: one using floating point arithmetic – the 32-bit float C type, and another,

slightly faster and more memory efficient, fixed point arithmetic decoder, where the LLR approxi-

mations were stored as 16-bit short int values.

The paper by Huang [43] provides a concise overview of the min-sum algorithm, together

with detailed description of its memory optimized single-scan improvement. Both algorithm vari-

ants are briefly summed up here: For a Gaussian channel and binary (BPSK) modulation, let xn be

the n-th transmitted bit, nn the sample of Additive White Gaussian Noise (AWGN), and yn the sam-

ple in the receiver. The modulation and channel transfer can be then described by (16) and the soft-

decoding min-sum algorithm works with the LLR metric Zn, defined by (17):

(2 1)n n ny x n= − + + (16)

(0) 2(0 /)
ln 2 /

(1/)

n n
n n

n n

p x y
Z y

p x y


=
= =

=
 (17)

where the 2 is the channel variance (may be omitted in the min-sum implementation) and the su-

perscript (k) indicates the iteration number. Each of the iteration implements the following steps:

1. The horizontal scan – the check node update:

For each m and each N(m) calculate the check node message Lmn, based on the variable

node messages Zmn coming from all incident variable nodes except the output one (with

index n).

()() () ()

' '
' ()\

' ()\

min sgnk k k

mn mn mn
n N m n

n N m n

L Z Z




=   (18)

2. The vertical scan - the variable node update:

For each n and each M(n) calculate the variable node message Zmn coming from all inci-

dent check nodes, except the output one (with index m).
() (0) ()

'

' ()\

k k

mn n m n

m M n m

Z Z L


= +  (19)

3. For each n and each M(n) calculate the posterior LLR estimate Zn
(k):

() (0) ()

()

k k

n n mn

m M n

Z Z L


= +  (20)

 Tomáš Páleník, Viktor Szitkey

24

4. Hard decision and termination:

For each codeword position n calculate the bit estimate (21) and if the orthogonality with

the H matrix condition is satisfied: Hx̂ = 0, terminate the decoding.
()

() 0, if 0;

1, otherwise

k

k n

n

Z
x

 
= 


 (21)

The values of Zmn are initialized by received channel samples: Zmn
(0) := Zn

(0) and (19) can be

easily rewritten using (20):
() () ()k k k

mn n mnZ Z L= − (22)

The single-scan min-sum algorithm modification takes advantage of the following obser-

vation: when eq. (18) is applied to a vector of values, the resulting vector only contains elements

with two possible magnitudes: the minimum of the input elements, and the second minimum. If

signs are stored separately from magnitudes, compressed as a bitmap in a single word, this proper-

ty, exploited by the algorithm design in [43], can be used to drastically reduce the decoder memory

requirements. For example, the maximum check node degree for the Wi-Fi 6 code R = 5/6 is

max(g(m)) = 20, so this optimization provides a saving of 18 magnitudes for each check

node.Furthermore, as described in [43], only the check node messages Lmn need to be stored, im-

mediately lowering memory requirements by almost 50%. Equation (18) can combined with (22)

and rewritten as:
() (1) (1) (1) (1)

' '
' ()\

' ()\

min sgn()k k k k k

mn n mn n mn
n N m n

n N m n

L Z L Z L− − − −




= −  − (23)

To reduce the number of iterations necessary for obtaining the desired BER, a further

modification of the computation – the layered decoding described in [44] was implemented. With-

out an in-depth description we can summarize it in the following way: The horizontal scan in (23)

is not performed on each of the M check nodes in a single loop, but is organized in tiers - groups of

check nodes of size Z block-rows of matrix H. The calculations of (20), (22) and (23) are then in-

terleaved during each decoder iteration (k): (23) is evaluated for a block of Z rows/checks, after

which the updated values Zn are used in evaluation of (20) and (22) which in turn updates the inputs

for the check nodes calculation (23) of the next tier. The algorithm then consists of two embedded

iterations: the inner one alternating between the horizontal and vertical step, and the outer iteration

over the Mb groups of check nodes/rows. These are sometimes denoted as super-iterations.

5 Fixed Point Implementation

For potential use of the LDPC decoder in constrained systems, especially with memory sav-

ing in mind, we also implemented a fixed-point arithmetic decoder, by default using the int16_t

exact-width integer data type, introduced in C99 for the min-sum algorithm metrics. This usually

but not necessarily compiles to short int. Because the decoding algorithm only uses the mini-

mum, plus and minus operations, the fixed-point arithmetic can further be simplified by simply

mapping of floating point values to an integer range. Our choice of the 16-bit representation is

much wider than the various 8- and even fewer bits used in decoders described in literature, but the

implementation is fully parametrized, so it is in theory easy to switch to a narrower 8bit representa-

tion. It is important to note that, when using narrow integer types, MATLAB uses a saturating

arithmetic to minimize errors coming from signal values higher than the maximum level, while the

standard C arithmetic uses the faster native wrap-around (or overflow) arithmetic.

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

25

Since it would be costly to check for overflow every time an addition is made, the primary

way used in our implementation is to use a wider storage than necessary. In the case of the 16bit

short int16_t C type, the floating point LLR values are actually sampled as QB bit integers, with

the default value of QB = 10.With an extra sign bit, this effectively defines an 11bit signed range

from -1023 to 1023. These values are stored within 16bit integers, leaving the 5 most significant

bits free so when values accumulate during the min-sum algorithm operation, the overflow occur-

rences will be reasonably rare and not catastrophically effect the resulting BER. Logically we can

expect this negative effect to be stronger with a growing number of summation elements, therefore

codes with smaller rate should be affected more. This is confirmed in the results section.

In order to support memory constrained architectures, three different configurations with

different memory requirements can be defined: Config A – a completely universal and memory

unconstrained implementation, will be useful for MATLAB simulations. It supports all of the

LDPC code parameters defined in (Tab.1) and (Tab.2) with an array encoder and floating point

decoder. Config B present a memory-constrained implementation: a bitmap encoder and fixed-

point decoder. It supports only a subset of compatible code (N, K) parameters, more specifically the

half of the WiMAX code parameters, shown in bold in (Tab.2). Config C will be a minimal

memory implementation with only one of the LDPC code parameters: N = 576 and R = 1/2 sup-

ported. (Tab.3) gives an overview of the memory requirements for all three implementations:

Table 3. Rounded memory requirements for various configurations in Bytes.

Configuration ENC [B] DEC [B]
Total

[KiB rounded]

Config A 4896 162 432 164

Config B 864 84 096 83

Config C 240 10 080 11

An important aspect of our implementation is the seamless integration with MATLAB.

While writing whole simulations in C is possible, and may provide very high throughput, the flexi-

bility of MATLAB as a tool for rapid prototyping and testing of potential modifications to existing

algorithms makes it an indispensable platform. Out of all the implementations available online [28]

- [32] none provides both C-language implementation with its performance, and also MATLAB

integration. The user can, however, sometimes choose between one of the two. Our implementation

fills this niche in that it implements a C encoder and decoder that can be directly used in an actual

communication system, while also allowing to run them unchanged from within the MATLAB

environment. To achieve this, separate C source files implement the necessary MEX wrappers that

make the encoder and decoder functions callable from MATLAB. All code is written in the C99

dialect supporting the portable representation of exact width integer types and tested with the GNU

c99 command, along with g++. If necessary, the encapsulation of functions to C++ objects should

be a simple task.

For both encoder and decoder the necessary buffers are defined as statically allocated ar-

rays and the important code parameters are written as constants (preprocessor macros) in an auto-

matically generated header file ldpc.h and source file ldpc.c. This enables for a simple and

readable code, where the analogy with the underlying mathematical equations is clearly visible.

Furthermore, this design facilitates the shift of C code optimizations to the compiler, where they

belong. The compilation to MEX file is done from inside the running MATLAB environment, and

appropriate functions are provided to make this process completely transparent to the user, i. e. the

user only has to call the provided functions, and doesn’t need to care about the details of compila-

tion.

 Tomáš Páleník, Viktor Szitkey

26

Since many parameters are compiled in, there are some limitations to current usage: the

adaptive change of code parameters during the simulation of an Adaptive Coding and Modulation

(ACM) systems is not yet implemented, but is still possible. All that needs to be done is to call the

compilation function at the beginning of simulation several times, one for each parameter set, and

specify slightly different names for the resulting MEX modules. The m-file wrapper would then

need to be extended to call a different MEX module for different code parameters. No C code mod-

ification would be needed for this extension

6 BER and Throughput Analysis

6.1 BER Evaluation

We evaluated the error correcting capabilities of our implementation for the QC-LDPC

codes used in IEEE 802.11ax and IEEE 802.16-2017 communication standards using the classic

approach of Monte-Carlo simulation producing the waterfall curve for the AWGN channel. The

whole communication chain: LDPC encoder, channel and LDPC decoder was evaluated alongside

the commercial Communication toolbox LDPC implementation introduced in recent MATLAB

version R2021b (denoted further as COM). As shown in (Fig.2) with curves for selected code pa-

rameters, the error performance of our floating point implementation is visually indistinguishable

from the toolbox implementation.

Fig.2. a) (left) Error performance for the Wi-Fi 6 R = 1/2 LDPC N = 1944 for maximum 10

decoder iterations along with the MATLAB Communications toolbox R2021b LDPC

implementation (plus marker). Our floating point (diamond) result closely copies the COM

implementation, fixed point decoder (star) shows some expected penalty. b) (right) Results for the

IEEE 802.11-2020 defined LDPC codes for N = 1944 and maximum of 10 decoder iterations, Code

rates R = 1/2 (diamond), R = 2/3 (x), R = 3/4 (o) and R = 5/6 (+).

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

27

As expected, the memory-constrained fixed point decoder (Config B) introduces an approx-

imately 0,1 dB penalty. This effect is most visible for larger values of N and smaller code rates

where the eq. (22) sums over large number of parity-check matrix rows; 972 rows for the code with

results shown in (Fig.2). For smaller N = 576 and higher R = 5/6, the fixed-point decoder curve is

getting even closer to the floating point implementation. During all the simulations at least 10000

errors were collected for each data point on the waterfall curve.

(Fig.2b) provides a comparison of results for various code rates defined for the N = 1944

LDPC code used in Wi-Fi 6, and (Tab.4) gives another perspective on the similarities of our im-

plementation (MEX) and the existing closed-source implementation (COM). Along with the num-

ber of simulated bit transfers a direct comparison of the resulting absolute number of errors after

decoding is given. More important relative error between the COM and MEX implementation is

calculated (denoted ).

Table 4. The average number of iterations (nIter), number of decoded bits (in thousands), absolute number of

errors of the commercial decoder (#E-COM) and our open source implementation (#E-MEX).

Eb/N0 nIter Kbit #E-

COM

#E-

MEX
%

1.00 8.00 1152 131 877 131 873 3.03e-3

1.20 7.99 3456 313 767 313 768 3.19e-4

1.40 7.93 5760 346 651 346 651 0.0

1.60 7.73 8064 241 298 241 300 8.29e-4

1.80 7.17 10368 97 798 97 794 4.10e-3

2.00 6.36 12672 23 731 23 732 4.20e-3

As shown in the last column of (Tab.4), in terms of number of errors after decoding, the im-

plementations give practically the same results. This is also true for the average number of decoder

iterations, denoted nIter, so only the value for the MEX decoder is shown.

6.2 Throughput Evaluation

Since the LDPC decoder is by far the most computationally intensive task in our simula-

tions, throughput evaluation was focused on the decoder function. Several different single- and

multi-threaded decoder configurations were evaluated and throughput compared to the optimized

MATLAB R2021b ldpcDecode() implementation (denoted as COM). Two x86-64 platforms

were compared: MATLAB R2021b on Ubuntu 18.04LTS running on an 8 core/16 thread Intel Core

i7-9800X CPU at 3.80GHz with Skylake-X architecture supporting the AVX-512 instruction set

extension, and MATLABR2022a on Ubuntu 20.04LTS running on an 16 core/32 thread AMD

Ryzen 9 5950X Processor.

(Tab.5) summarizes the data-bits throughput of the decoder for the WIMAX QC-LDPC

code with rate R = 5/6, and codeword size N = 2304. Data were processed in blocks of 10 code-

words per thread and the decoder was always set to perform a fixed number of 10 iterations in or-

der to prevent comparing runtimes with varying iteration numbers. 32-bit floating point and 16-bit

fixed point (integer) implementations were evaluated along with two different multithreading ap-

proaches: The first, more straightforward, implementation spawns worker threads each time the

MEX function is run by MATLAB and destroys them during the same call, just after the block is

decoded. This is denoted in (Tab.5) with the suffix: simple. A more sophisticated method, denoted

as MTX, starts the worker threads once and then synchronizes to them each time the decoder MEX

function is called by using POSIX thread conditional variables and mutexes.

 Tomáš Páleník, Viktor Szitkey

28

Table 5. Throughput comparison for two CPUs: AMD and Intel, single- and multi-threaded implementation,

floating- and fixed- point decoder, Commercial LDPC implementation (COM), and our implementation

(MEX). MTX denotes a more sophisticated thread synchronization implementation using POSIX mutexes.

LDPC Decoder implementation / CPU
Throughput

[Mbps]

1 MEX float, single thread, Intel 1.61

2 MEX fixed, single thread Intel 2.15

3 COM single thread, Intel 2.62

4 MEX float, 16 thread simple, Intel 11.19

5 MEX float, 16 thread MTX, Intel 12.40

6 MEX fixed, 16 thread simple, Intel 13.19

7 MEX fixed, 16 thread MTX, Intel 13.44

8 COM Multi thread, Intel 2.10

9 MEX float, single thread, AMD 2.45

10 MEX fixed, single thread AMD 3.70

11 COM single thread, AMD 3.64

12 MEX float, 32 thread simple, AMD 36.46

13 MEX float, 32 thread MTX, AMD 37.76

14
MEX fixed, 32 thread simple,

AMD
40.35

15 MEX fixed, 32 thread MTX, AMD 43.95

16 COM Multithreaded, AMD 3.33

17 CLI float, single thread AMD 6.31

As shown on lines 1 to 3, and 9 to 11 our single-threaded implementation reaches only

about 60% of the otherwise equivalent Communications Toolbox function. This is not surprising,

given the fact that the LDPC decoder in MATLAB is now a mature optimized implementation,

which is only available as a closed-source MEX file. It is hard to infer what optimizations, such as

the use of intrinsics or the optimized Intel MKL library, were made. Our implementation relies on

the standard C99 language constructs only, which brings some throughput penalty but facilitates

portability. The fixed point implementation improves the throughput slightly while sacrificing

some error performance.

Since modern CPUs have been using many cores for a long time, the multi-threaded im-

plementation is actually the one that matters. Here the advantage of our approach lies in the ability

to fine-tune the number of threads that the user can specify explicitly, compared to the On/Off set-

ting in the toolbox function. Lines 4 to 7 and 12 to 15 compare various multithreaded implementa-

tions on Intel and AMD platforms. The comparison with the toolbox function is given on lines 8

and 16, showing the throughput of the multithreaded version of the ldpcDecode() method to be

an order of magnitude lower than of our implementation. The low throughput of the multithreaded

toolbox decoder is somewhat surprising, and may indicate a bug in the implementation, potentially

fixed in some later toolbox release. The actual use of multiple threads was checked by the OS-built-

in system monitor utility.

What’s a bit disappointing is the almost negligible throughput improvement of the more

sophisticated MTX design, where the worker threads are running (or waiting) in parallel to the

main MATLAB thread, and are synchronized to the main thread by means of POSIX conditional

variables and mutexes. As shown in rows 5, 7, 13, 15 of (Tab.5), these actually represent so much

overhead that such implementation, with its greatly complicated design, bring negligible benefit

relative to the simple implementation shown in rows 4, 6, 12, and 14.

For more insight into how much the MATLAB environment affects performance, a com-

mand line version of the benchmark was run, compiled by the GNU c99 CLI compiler. The result

shown on line 17 of (Tab.5) indicate more than double the performance.

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

29

Conclusion

In this paper we described the details of our QC-LDPC encoder and universal LDPC decod-

er C99 implementations, which focus on (but are not limited to) the modern LDPC codes defined in

the IEEE 802.11-2020 and IEEE 802.16-2017 standards. We provided error performance evalua-

tion results comparable to a state-of-the art closed-source implementation provided by the

MATLAB R2021b Communications Toolbox, along with comparison of throughput of various

configurations on Intel and AMD platforms. The complete source code of the C99 encoder and

decoder, along with MATLAB MEX wrappers and supporting MATLAB scripts are freely availa-

ble at our GitHub page [46] published under a permissive BSD license.

Acknowledgement

This work was supported by the Slovak APVV Agency under cont. no. APVV-19-0436.

References

[1] TANNER, R. M., SRIDHARA, D., SRIDHARAN, A., et al. LDPC block and convolutional codes

based on circulant matrices. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, pp.

2966-2984. DOI: 10.1109/TIT.2004.838370

2 LI, Z., CHEN, L., ZENG, L., et al. Efficient encoding of quasi-cyclic low-density parity-check

codes. IEEE Transactions on Communications, 2006, vol. 54, no. 1, pp. 71-81.

DOI:10.1109/TCOMM.2005.861667

3 IEEE Std. 802.16-2017, IEEE standard for air interface for broadband wireless access systems –

Section 8.4.9.2.5: low density parity check (LDPC) code. IEEE New York (USA), 2018,

pp. 1459 – 1463. ISBN 978-1-5044-4474-3

[4] IEEE Std. 802.11ax-2021, Part 11: wireless lan medium access control (MAC) and physical layer

(PHY) specifications - Amendment 1: enhancements for high-efficiency WLAN. IEEE New York

(USA), 2021. ISBN 978-1-5044-7389-7

[5] IEEE Std 802.11-2020, Part 11: wireless lan MAC and PHY specifications - Annex F: HT LDPC

matrix definitions. IEEE New York (USA), 2021. p. 4130–4132. ISBN 978-1-5044-7283-8

[6] ETSI EN 302 307 V1.2.1, Digital Video Broadcasting (DVB): Second generation framing structure,

channel coding and modulation systems for broadcasting, interactive services, news gathering and

other broadband satellite applications (DVB-S2). ETSI Sophia Antipolis Cedex (France), 2009.

[7] 3GPP TS 38.212 V17.4.0, 3rd Generation Partnership Project; Technical Specification Group Radio

Access Network; NR; Multiplexing and channel coding (Release 17). 3GPP Valbonne (France),

2022. Available at: http://www.3gpp.org

[8] IEEE Std. 802.3-2018, IEEE Standard for Ethernet 802.3-Section 7: 10G Ethernet, Chapter:

101.3.2.4 low density parity check (LDPC) forward error correction (FEC) codes. IEEE New York

(USA), 2018, p. 321–330. DOI: 10.1109/IEEESTD.2018.8457469

[9] IEEE Std. 802.3-2018, IEEE Standard for Ethernet 802.3-2018 (Revision of IEEE Std 802.3-2015) -

Section 8: 200G and 400G Ethernet Chapter: 119.2.4.6. IEEE New York (USA), 2018, p.67–69.

DOI: 10.1109/IEEESTD.2018.8457469

[10] FARKAS, P., RAKUS, M. Decoding five times extended reed solomon codes using syndromes.

Computing and Informatics, 2020, no. 6, vol 39, pp.1311–1335. ISSN 2585-8807 (online), DOI:

10.31577/cai_2020_6_1311

 Tomáš Páleník, Viktor Szitkey

30

[11] CCSDS 131.0-B-3, Recommendation for Space Data System Standards - TM synchronization and

channel coding - Recommended standard - Blue book. CCSDS Washington DC (USA), 2017, p. 51–

55. Available at: https://public.ccsds.org/publications/bluebooks.aspx

[12] CCSDS 130.1-G-3: Report Concerning Space Data System Standards – TM synchronization and

channel coding summary of concept and rationale – Informational report – Green book. CCSDS,

Washington DC (USA), 2020, p.84–94.

[13] SOWMYA, G., KEERTHI, K., LALITKRUSHNA, J. T., et al. An architecture for efficient encoding

of quasi cyclic LDPC codes and its implementation in FPGA. In IEEE 11th International Conference

on Communication Systems and Network Technologies (CSNT), Indore (India), 2022, pp. 136-140.

DOI: 10.1109/CSNT54456.2022.9787597

[14] LIU, J., FENG, Q. A Miniaturized LDPC Encoder: Two-layer architecture for CCSDS near-earth

standard. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 7, p.

2384–2388. DOI: 10.1109/TCSII.2021.3054334

[15] KANG, J., WANG, B., ZHANG, Y., AN, J. Enhanced partially-parallel LDPC decoder for near earth

applications. In IEEE 11th International Conference on Electronics Information and Emergency

Communication (ICEIEC), Beijing (China), 2021, p. 12-16.

DOI: 10.1109/ICEIEC51955.2021.9463828

[16] RAJAGOPALAN, P., et al. Performance analysis of LDPC decoding algorithms for CCSDS tel-

ecommand space data link protocol. In 2nd International Conference for Emerging Technology

(INCET), Belagavi (India), 2021, p. 1-5. DOI: 10.1109/INCET51464.2021.9456163

[17] RAKUS, M., FARKAS, P. On possible energy savings with transmission supported via feedback

channel in CubeSat transceiver. In Journal of Electrical Engineering, 2021, vol.72, no. 5, p. 337–342.

DOI: 10.2478/jee-2021-0047

[18] GEISELHART, M., EBADA, M., ELKELESH, A. et al., Automorphism ensemble decoding of qua-

si-cyclic LDPC codes by breaking graph symmetries. IEEE Communications Letters, 2022, vol. 26,

no. 8, p. 1705-1709. DOI: 10.1109/LCOMM.2022.3174164

[19] NGUYEN, J., WANG, L., HULSE, C. et al., Neural normalized min-sum message-passing vs. viterbi

decoding for the CCSDS line product code. In ICC 2022 - IEEE International Conference on Com-

munications. Seoul (Korea), 2022, p. 2375–2380, DOI: 10.1109/ICC45855.2022.9838412

[20] FARKAS, P., RAKUS, M. Adding RLL properties to four CCSDS LDPC codes withouth increasing

their redundancy. Accepted for publication in Computing and Informatics, 2023, ISSN 1335-9150

[21] SMARANDACHE, R., MITCHELL, D. G. M. A unifying framework to construct QC-LDPC Tanner

graphs of desired girth. IEEE Transactions on Information Theory, 2022, vol. 68, no. 9,

p. 5802-5822. DOI: 10.1109/TIT.2022.3170331

[22] JUNG, Y., CHUNG, C., KIM J., JUNG, Y. 7.7Gbps encoder design for IEEE 802.11n/ac QC-LDPC

codes. In International SoC Design Conference (ISOCC), Jeju (Island), 2012, pp. 215–218.

DOI: 10.1109/ISOCC.2012.6407078

[23] MAHDI A., PALIOURAS V. A low complexity-high throughput QC-LDPC encoder. IEEE Transac-

tions on Signal Processing, 2014, vol. 62, no. 10, p. 2696–2708. DOI: 10.1109/TSP.2014.2314435

[24] KUN, C., QI, SHENGKAI, L., CHENGZHI, P. Implementation of encoder and decoder for LDPC

codes based on FPGA. Journal of Systems Engineering and Electronics, 2019, vol. 30, no. 4,

p. 642–650. DOI: 10.21629/JSEE.2019.04.02

[25] NGUYEN, T., NGUYEN, T., LEE, H. Efficient QC-LDPC encoder for 5G new radio. Electronics.

2019, vol.8, no. 6, p.668, ISSN: 2079-9292. DOI: 10.3390/electronics8060668

[26] YAO, X., LI, L., LIU, J., LI Q. A low complexity parallel QC-LDPC encoder. In IEEE MTT-S In-

ternational Wireless Symposium (IWS). Nanjing (China), 2021, p. 1–3,

DOI: 10.1109/IWS52775.2021.9499562

[27] LE GAL, B., JEGO, C. High-throughput multi-core LDPC decoders based on x86 processor. IEEE

Transactions on Parallel and Distributed Systems, 2016, vol. 27, no. 5, p. 1373–1386.

DOI: 10.1109/TPDS.2015.2435787

High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder-Decoder

31

[28] WANG, A. Wangaran/LDPC Codes GitHub repository, 2015. [Online] Cited 2023-02-24.

Available at: https://github.com/ wanganran/LDPC_codes/tree/master/LDPC_Code

[29] TAVILDAR, S. Tavildar/LDPC. GitHub repository, 2016, [Online] Cited 2023-02-24.

Available at: https://github.com/ tavildar/LDPC

[30] SEA-WIND, cea-wind/LDPCC. LDPCC GitHub repository, 2018, [Online] Cited 2023-02-24.

Available at: https://github.com/cea-wind/LDPCC/tree/master

[31] INAN., A. xdsopl/LDPC. GitHub repository, 2018. [Online] Cited 2023-02-24.

Available at: https://github.com/xdsopl/LDPC

[32] MAUNDER, R. robmaunder/ldpc-3gpp-matlab. GitHub repository, 2018, [Online] Cited 2023-02-

24. Available at: https://github.com/robmaunder/ldpc-3gpp-matlab

[33] RADFORD, N. radfordneal/LDPC-codes. GitHub repository, 2011, [Online] Cited 2023-02-24.

Available at: https://github.com/radfordneal/LDPC-codes

[34] BERTRAND, L. G. blegal/Fast – Fast LDPC decoder for x86, GitHub repository, 2020. [Online]

Cited 2023-02-24. Available at: https://github.com/blegal/Fast_LDPC_decoder_for_x86

[35] MATHWORKS MATLAB documentation: comm.gpu. LDPCDecoder, 2012. [Online] Cited 2023-

02-24. Available at: https://www.mathworks.com/help/comm/ref/comm.gpu.ldpcdecoder-system-

object.html

[36] MATHWORKS MATLAB documentation online: ldpcDecode, 2021. [Online] Cited 2023-02-24.

Available at: https://www.mathworks.com/help/comm/ref/ ldpcdecode.html

[37] GALLAGER, R.G. Low-density parity-check codes, MIT Press Cambridge (USA), 1963.

Available at: https://direct.mit.edu/ books/book/3867/Low-Density-Parity-Check-Codes

DOI: 10.7551/mitpress/4347.001.0001

[38] YANG, M., RYAN, W.E., LI, Y. Design of efficiently encodable moderate-length high-rate irregular

LDPC codes. IEEE Transactions on Communications, 2004, vol. 52, no. 4, p. 564-571.

DOI: 10.1109/TCOMM.2004.826367

[39] CHISNALL, D. C Is Not a Low-level Language - Your computer is not a fast PDP-11. ACMqueue,

2018, vol. 16, no. 2. Available at: https://queue.acm.org/detail.cfm?id=3212479

[40] FOSSORIER, M., MIHALJEVIC, M., IMAI, H. Reduced complexity iterative decoding of low den-

sity parity check codes based on belief propagation. IEEE Transactions on Communications, 1999,

vol. 47, p. 673–680. DOI: 10.1109/26.768759.

[41] CHEN, J., FOSSORIER, M. Density evolution of two improved BP-based algorithms for LDPC

decoding. IEEE Communications Letters, 2002, vol. 6, p. 208–210. DOI: 10.1109/4234.1001666

[42] KSCHISCHANG, F.R., FREY, B.J., LOELIGER, H.A. Factor graphs and the sum-product algo-

rithm. IEEE Transactions on Information Theory, 2001, vol. 47, no. 2, p. 498–519.

DOI: 10.1109/18.910572

[43] HUANG, X. Single-scan min-sum algorithms for fast decoding of LDPC codes. In IEEE Information

Theory Workshop - ITW ’06. Chengdu (China), 2006, p. 140-143. DOI: 10.1109/ITW2.2006.323774

[44] HOCEVAR, D.E. A reduced complexity decoder architecture via layered decoding of LDPC codes.

In IEEE Workshop on Signal Processing Systems. Austin–TX.(USA), 2004, p. 107-112.

DOI: 10.1109/SIPS.2004.1363033

[45] INTEL CORP. USA. C++ Compiler Classic Developer Guide and Reference. [Online] Cited 2023-

02-24. Available at: https://www.intel.com/content/www/us/en/develop/documentation/cppcompiler-

developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx-512-

instructions.html

[46] PALENIK, T. YALDPC Toolkit, GitHub repository. [Online] Cited 2023-02-24.

Available at: https://github.com/talenik/ YALDPC

 Tomáš Páleník, Viktor Szitkey

32

Authors

Ing. Tomáš Páleník, PhD.

Slovak University of Technology in Bratislava, Slovakia

tomas.palenik@stuba.sk (corresponding author)

He received his Master’s degree in 2006 from the STU and in 2010 he finalized

his dissertation: “Communication system design based on an SDR platform:

Exploiting the redundancy of an OFDM system” and received the Ph.D. degree

in telecommunications. His research interests include digital communications

systems, Orthogonal Frequency Division Multiplexing, Software Defined Ra-

dio, Error-Control Coding, IPv6 & IoT and graph algorithms in communica-

tions. During 2006–2008 he worked as an external consultant for Sandbridge-

Technologies, N.Y., USA, where he implemented an LDPC decoder for an in-

house developed multicore mobile processor SandBlaster. Later working in ac-

ademia, he has participated in multiple research projects and also took part in

the COST action IC1407. In 2019 he worked as a researcher and analyst at the

AIT - Austrian Institute of Technology. He presented at several international

conferences such as Wireless Innovation’s SDR in Washington D.C., USA.

He is a member of the IEEE

Bc. Viktor Szitkey

Slovak University of Technology in Bratislava, Slovakia

xszitkey@stuba.sk

Research interests focuses on various technology implementation in SDR.

Student member of the IEEE.

33

International Journal Volume 11, Number 2, December 2022

Information Technology Applications (ITA)

NEURAL-GENETIC CONTROL ALGORITHM

FOR TWO-LINK ROBOT

Slavomír Kajan, Štefan Kozák

Abstract:

This paper deals with soft state control of non-linear dynamic model – robot. Soft methods based on

neural networks and genetic algorithms demonstrate powerful problem solving ability. They are based

on quite simple principles, but take advantage of their mathematical nature: non-linear iteration com-

putation solutions. One of the ways of control of such non-linear systems is the use of neural networks

as an effective controllers. In this paper a new methodology is proposed, where for neural controller

structures and parameters are computed by the genetic algorithm (GA). The proposed approach is rep-

resents by direct neural controller using multilayer perceptron (MLP) network in feedback tracking

control loop. The training method using GA allows find optimal adjustment of neural network weights

so that high performance is obtained. The proposed control method is realized in Matlab/Simulink and

demonstrated on typical non-linear systems (two-link robot).

Keywords:

Genetic algorithm (GA), MLP network, neural controller (NC), neural network,

non-linear dynamic system, robot model.

ACM Computing Classification System:

Evolutionary algorithms, Artificial intelligence, Control systems.

Introduction

During the past decade there has been an intense interest in developing the soft computing meth-

ods (SCM) and techniques for a wide variety of scientific and engineering applications. The process

control research in this area has been largely concerned with four SCM methods: knowledge-based sys-

tems, neural networks, fuzzy logic, genetic algorithms and various combinations of these techniques. In

recent years, different fuzzy logic models are developed to cope with nonlinearities and uncertainties in

many industrial systems. The fuzzy and neural models are mainly used to model system with complex

physical structure. Soft computing methods can be used to optimize model parameters over a full range

of input–output data. In recent years, genetic algorithm (GA) is widely used as an optimization method

for training and adaptation of parameters in dynamical system. In many cases, the GA techniques are

integrated in fuzzy logic and neural network structure as suitable optimization approach. GAs have many

advantages over the conventional optimization methods. It does not require a complete system model

and can be employed to globally search for the optimal solution. In literature as well as in practice appli-

cations of control systems occur, which are using artificial neural networks. The multilayer perceptron

(MLP) neural network has good properties for direct control of non-linear systems (Chaozing Z., 1998).

 Slavomír Kajan, Štefan Kozák

34

For control of some classes of non-linear dynamical systems with advantage neural controllers

(NC) are used. The neural network can be applied as a direct controller. It can emulate expert or another

type of controller, it can be direct inverse controller, neuro-predictive controller or direct controller.

The main goal of this paper is to present an approach to the state control of an industrial robot

using neural network and genetic algorithm. We know that the robots are characterized by a complex

non-linear dynamical structure with un-modelled dynamics and unstructured uncertainties. These fea-

tures make the designing of controllers for the robots a difficult task in the framework of state control.

For the design of robot control are often used optimal control, linear-quadratic and neural control ap-

proaches. This article deals with last named type which is optimized by genetic algorithms.

1 Dynamic Model of Robot

We shall consider the robot with the kinematics structure by (Fig.1), the dynamic model of

which is described in the state space:

22

123

2

2

123

421
443

1
12

41221

2
 ,

 ,

u
xmI

K

xmI

xxxm
xxx

u
m

K
xx

m

m
xxx

bb

b

rr

b

+
+

+
−==

+==





 (1)

where 21 , mmmmmmm brrrzb ++=+=

mz = 35 kg, is the mass of the weight,

m1 = 52 kg, is the mass of the grasp head and part of the arm,

mrr= 62.5 kg, is reduced mass of the gear,

m2 = 78 kg, is the mass of the servomotors of the arm.

K1 = 281 Nm, K2 = 291 Nm are constants of the operational values.

() 2

043223 rmmmII r +++=

Ir = 82.5 kgm2 is reduced torque of the inertia of the electric servo-motor and the gear box.

m3 = 90 kg, m4 = 125 kg, r0 = 250 mm

The elements of the state vector are:

x1 = r[m]; x2 = r [m.s-1]

x3 = [rad]; x4 =  [rad.s-1]

u1(t) and u2(t) are control action variables

where r is translation of the arm.

  is rotation of the arm ()2,0

Neural-Genetic Control Algorithm for Two-Link Robot

35

Fig.1. The kinematic scheme of the robot.

2 Neural Genetic Control Algorithm

In (Fig.2) the scheme of the neural control (NC) with optimisation of controller parameters

using genetic algorithm is depicted. The main aim of euro-genetic control is computation of control-

ler law parameters subject to the constraints and objective function defined by (3).

Fig.2. Block scheme of the neural – genetic control system.

Control action can be defined as nonlinear function

)),(),2(),1(),(),(()(ttWtytytyteftu −−=

GA

NC ROBOT

Criterion
function

Constrains

w + e u y

-

 Slavomír Kajan, Štefan Kozák

36

3.1 Neural Controller

Consider, the neural controller is represented by a multi-layer perceptron network (MLP) with

a single hidden layer. This type of neural network is able to approximate any type of a arbitrally

continuous non-linear function. The scheme of the proposed neural controller is shown in (Fig.3).

Fig.3. Scheme of the neural controller.

The inputs, states and output variables are the neural network are:

- the control errors e1(t) and e2(t), e1(t)= w1(t)- x1(t) and e2(t)= w2(t)- x3(t)

- output process variable y(t),

- states of system x(t)=[x1(t), x2(t), x3(t), x4(t)].

where w1(t), w2(t) are reference values of arm translation and rotation. Outputs from the neural net-

work are then the control values u1(t) and u2(t). The neural network with such inputs and outputs

represents a non-linear state controller, where its outputs are a non-linear functions of its inputs.

In the hidden layer of the multilayer perceptron network (MLP) the hyperbolic tangent acti-

vation functions are used (tansig) in form

() 1
1

2
2

−
+

=
− ae

a . (2)

In the output layer linear activation function has been used. The optimized parameters are the

weights between input and hidden layer W1ij, weights between hidden and output layer W2jl, biases

in the hidden layer b1j and bias in output layer b2l. For the initial setting of the neural controller

parameters the Levenberg-Marquardt method is possible to use, where the data from a designed LQ

controller as training data can be used.

3.2 Genetic Algorithm

A general scheme of the used GA can be described by following steps (Fig.4):

1. Initialization of the population of chromosomes.

2. Fitness evaluation of the population.

3. End if terminal conditions are satisfied.

4. Selection of parent chromosomes.

 inputs

output

Neural-Genetic Control Algorithm for Two-Link Robot

37

5. Crossover and mutation of the parents children.

6. Completion of the new population from the new children and selected members of the old

population. Jump to the step 2.

Fig.4. Block scheme of the used genetic algorithm.

The chromosome contains the set of neural network parameters - weights and biases and the

optimised fitness function can use performance index in form (3), or other, where T is simulation

time, e1 and e2 are the control errors, u1 and u2 are the control values and q1, q2, r1, r2 are weight

constants.

() () +++=

TT

dtururdteqeqJ

0

2

22

2

11

0

2

22

2

11
2

1

2

1
, (3)

After the initialization of the population, fitness of each chromosome of the population is

evaluated. Fitness contains closed loop simulation with the model of the non-linear system and the

neural controller and the performance index evaluation. The design procedure is based on the genetic

algorithm (Fig.5).

Fig.5. Block scheme of the GA-based neural controller design.

Initial. fitness Solution End ?

Selection

Crossover

Mutation

New population

P0 Pk

 Pk+1=B U G’

G

G’ U

B

yes

no

Fitness eva-

luation

Load pa-

rams

Simulation

neural controller + system

Performance

index

Genetic

Algorithm

Solution

 Slavomír Kajan, Štefan Kozák

38

3 Simulation Results

As mentioned, for verification of the design approach NC the simulation model of robot

(Fig.6) has been used. The non-linear simulation model of robot was created according to the equa-

tions (1). The simulation scheme of neural control of robot dynamic model is displayed in (Fig.7).

In case of the closed loop controller the neural controller with the MLP network with a single

hidden layer is used [4]. The hidden layer contains 7 neurons for control of the robot model. The

weights and biases of MLP network were optimised using GA with criterion function (3), where

weights constants were setting as q1=1000, q2=1000, r1 = 0.1, r2 = 0.1.

Fig.6. Simulation scheme of non-linear dynamic model of robot.

In (Fig.8) the simulation results as time-responses to arm translation x1 and tracking of desired

arm translation w1 trajectory under the neural controller are compared. The trajectory of desired arm

rotation w2 is equal as in (Fig.8). The time-responses of system state variables in movement from

state x(0)=[0 0 0 0] to state x(T)=[0.2 0 0.2 0] are displayed in (Fig.9) and (Fig.10). In these figures

the simulation results as time-responses to arm translation x1 and arm rotation x3 are compared with

desired arm translation w1 trajectory and desired arm rotation w2 trajectory. The time-responses of

control variables u1 and u2 of neural controller are displayed in (Fig.11). For tracking of desired

trajectory w1 maximal value of absolute control error was 0.0027 and mean value was 0.0012. For

tracking of desired trajectory w2 maximal value of absolute control error was 0.0014 and mean value

was 0.0006.

4

x4

3

x3

2

x2

1

x1

-K-

mb/mr

mb

mb

K2

K2

-K-

K1/mr

1
s

1
s

1
s

1
s

1/u

Fcn

I23

Constant

-K-

-2*mb

2

u2

1

u1

Neural-Genetic Control Algorithm for Two-Link Robot

39

Fig.7. Simulation scheme of neural control of robot model.

Fig.8. Time-responses of arm translation x1 (x2 is speed of x1)

for tracking of desired trajectory w1

Fig.9. Detail of time-responses of arm translation x1 (x2 is speed of x1)

for tracking of desired trajectory w1

e2

To Workspace9

e1

To Workspace8

w1

To Workspace7

t

To Workspace6

u2

To Workspace5

u1

To Workspace4

x4

To Workspace3

x3

To Workspace2

w2

To Workspace10

x2

To Workspace1

x1

To Workspace

In1Out1

Subsystem2

In1Out1

Subsystem1

u1

u2

x1

x2

x3

x4

Subsystem

Scope2

Scope1

e1

e2

x1

x2

x3

x4

u1

u2

Neural Controller

1
s

1
s

Clock

0 0.5 1 1.5 2 2.5 3 3.5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x
,

w

t [s]

x1

x2

w1

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x
,

w

t [s]

x1

x2

w1

 Slavomír Kajan, Štefan Kozák

40

Fig.10. Detail of time-responses of arm rotation x3 (x4 is speed of x3)

for tracking of desired trajectory w2

Fig.11. Detail of time-responses of control variables u1 and u2 under neural controller.

Conclusions

The new hybrid intelligent control methods based on neural-genetic approach presents an effi-

cient tool for handling plants with complex dynamics as well as unstable inverse systems, time-varying

time delays, occasional open-loop instability, plant model miss-matches, different uncertainties, etc.

Neural controllers are able to provide high performance in control of non-linear systems. Hybrid soft

computing methods based on genetic algorithms are an efficient means for neural controller parameters

computation. The obtained numerical and graphical control results demonstrated in paper demonstrate

that the hybrid ANN-GA control approach is well formulated and can be effectively implemented to

control for robot.

Acknowledgements

The work has been supported by the grant agency VEGA no.1/0937/14.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

x
,

w

t [s]

x3

x4

w2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
1
 u

2

t [s]

u1

u2

Neural-Genetic Control Algorithm for Two-Link Robot

41

References

[1] Chaozing, Z. (1998). Control and Dynamic System. Academic Press. New York.

2 Z. Dideková, S. Kajan, Neural Control of Non-Linear Processes Designed by Genetic Algorithms,

In: ELITECH `09 : 11th Conference of Doctoral Students. Bratislava, STU in Bratislava FEI,

2009. - ISBN 978-80-227-3091-4.

3 R. Gašparík, Optimálne riadenie manipulátora, Diplomová práca, FEI STU Bratislava, 2007

[4] A. Jadlovská, Modelovanie a riadenie dynamických procesov s využitím neurónových sietí (Edícia

vedeckých spisov. FEI TU Košice, ISBN 80-8894122-9, 2003, in Slovak language).

[5] A. Jadlovská, Using Forward and Inverse Neural Models for Solving Optimal Tracking Problem of

Non-Linear System, Journal of Electrical Engineering, Vol. 55, No. 5-6, 2004, pp. 150-155

6 I. Sekaj, Genetic Algorithm Based Controller Design,

In: 2nd IFAC conference Control System Design'03, Bratislava, 2003.

7 M. T. Hagan, M. B. Menhaj, Training Feedforward Networks with the Marquardt Algorithm, Sub-

mitted to the IEEE Proceedings on Neural Network, 1994.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning

(Addisson-Wesley, 1989).

[9] I. Sekaj, Evolučné výpočty a ich využitie v praxi (Iris, Bratislava, 2005, in Slovak language).

10 I. Sekaj, Evolutionary Based Controller Design, In: Evolutionary Computation, Book edited by:

Wellington Pinheiro dos Santos, ISBN 978-953-307-008-7, pp. 239-260, October 2009,

In-Tech, Vienna, Austria. 2009.

11 R. C. Dorf, Modern Control Systems (Addison-Wesley publishing Company, 5th edition, 1990).

Authors

Ing. Slavomír Kajan, PhD.

Institute of Robotics and Cybernetics,
Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava, Slovakia

slavomir.kajan@stuba.sk

His research interests are artificial intelligence, neural networks

and applications of AI methods in medicine, control systems and robotics.

prof. Ing. Štefan Kozák, PhD.

Faculty of Informatics,

Pan-European University in Bratislava, Slovakia

stefan.kozak@paneurouni.com

His research interests include system theory, linear and nonlinear control

methods, numerical methods and software for modeling, control, signal

processing, IoT, IIoT and embedded intelligent systems for digital factory

in industry and medicine.

 Slavomír Kajan, Štefan Kozák

42

43

International Journal Volume 11, Number 2, December 2022

Information Technology Applications (ITA)

COMPARISON OF FIRST-PRINCIPLES

AND EXPERIMENTAL VEHICLE MODELS

Dávid Mikle, Juraj Račkay

Abstract:

This article deals with the development and comparison of different vehicle models to be used in vehicle

dynamics control of an electric all-wheel drive vehicle in the future. The aim is to verify the accuracy of

lateral and longitudinal motions of selected vehicle models based on two different approaches. Using

first principles describing basic vehicle dynamics, single and the twin track vehicle models are derived

in form of systems of nonlinear differential equations. Using experimental identification, five vehicle

state space models of orders are identified based on measurements on a real vehicle. The experiments

performed were three different test maneuvers. Vehicle models are then compared using the measured

data with the simulation results in MATLAB.

Keywords:

Vehicle dynamics, vehicle model, state-space model, MATLAB, systemIdentification toolbox.

ACM Computing Classification System:

Dynamic systems control.

1 Introduction

A significant challenge in electric vehicles with all-wheel drive is the way how to control

whole powertrain to improve vehicle dynamics while increasing safety and stability. This can be

achieved by various control strategies with different complexity. Each of these strategy is based on

physical laws and mathematical descriptions of vehicle motion – vehicle model.

A wide range of simplified vehicle dynamics models is available in the literature, which are

able to accurately represent basics of the force and moment dynamics [1]. However, in case of critical

vehicle situations, it is essential to assume a more descriptive model considering the couplings be-

tween vehicle components. The application of multi-body dynamics for the analysis of vehicle han-

dling problems was firstly discussed in [2], which was later applied in several complex multibody

dynamics models in [3] and [4]. A complete multi-body model of the vehicle including the suspen-

sion geometry and tire characteristics was introduced in [5]. Simultaneously several multi DOF non-

linear multi-body dynamic models that can accurately represent almost all physical characteristics of

the vehicle including suspension and tire dynamics has been proposed in [6] and [7]. But all these

models have huge demands in computation power. To scale down the computational requirement, an

intermediate multi-body model was proposed by authors of [8], which was well accepted in automo-

tive industry for less critical applications.

 However, these models are rarely used in their raw form, because of demand of simultane-

ously solve the combined differential or algebraic system of equations, which brings convergence

issues with an even more computational requirements to the system.

 Dávid Mikle, Juraj Račkay

44

Therefore a dominant amount of vehicle control strategies, for instance, the side slip control,

yaw control, and trajectory control are based on a linearized version of vehicle operating condition

known as the single track model. Example of step by step derivation of such a model can be found

in [9]. In this model the vehicle is considered in its most simplified form, neglecting tire’s side slid-

ing, all lifting, rolling and pitching motion and assuming constant mass distribution on the axles. Of

course, these simplifications come at the cost of reduced accuracy in the model as compared with

actual vehicle motion, but model outputs still fits reality enough for purposes of vehicle control.

2 Vehicle Model Development

In vehicle planar movement analysis, with neglecting the internal forces, vehicle has 6 degrees

of freedom (DOF). Number of DOF can be additionally reduced by several assumptions when con-

sidering only longitudinal, lateral and yaw motion. With used simplifications, in next chapters we

consider vehicle of 3 DOF.

A Single track model derivation

Single-track model (Fig.1) describes well basic drive processes without much effort in mod-

eling and parametrization. In this paper for single track model representation, we will take derivation

of model from work of Efremov [9].

This model is used to describe planar vehicle motion, with next simplifications:

• All lifting, rolling, and pitching motion is neglected.

• Vehicle mass is concentrated at the center of gravity.

• Front and rear tires are represented as one single tire on each axle.

 Imaginary contact points of tires and surface are assumed to lie along the center of axles.

• Pneumatic trail and aligning torque resulting from a side-slip angle of a tire are neglected.

• Mass distribution on the axles is assumed to be constant.

Fig.1. Single track model.

 Comparison of First-Principles and Experimental Vehicle Models

45

With assumed simplifications above, for considered vehicle three equations of motion exists:

 𝐹𝑥 = −𝑚𝑣(𝛽̇ + 𝛹̇) sin(𝛽) + 𝑚𝑣̇ cos(𝛽) (1)

 𝐹𝑦 = −𝑚𝑣(𝛽̇ + 𝛹̇) cos(𝛽) + 𝑚𝑣̇ sin(𝛽) (2)

 𝑀𝑍 = 𝐼𝑍𝛹̈ (3)

Where, m is the vehicle’s mass, v is the velocity of the center of gravity COG of the vehicle, β

is the side-slip angle, ψ is the yaw angle, IZ is the moment of inertia of the vehicle around the z axis.
On the other side of the equations, there are forces acting on the COG of the vehicle along with x (FX)
and y (FY) axes and the moment acting around the z axis (MZ).

The resulting system of nonlinear differential equations describing the steering angle projection
and vehicle dynamics can be written as follows:

𝛽̇ = −𝜓̇ +
1

𝑚𝑣
(𝐹𝑦 𝑐𝑜𝑠(𝛽) − 𝐹𝑥 𝑠𝑖𝑛(𝛽)) (4)

𝑣̇ =
1

𝑚
(𝐹𝑦 𝑠𝑖𝑛(𝛽) + 𝐹𝑥 𝑐𝑜𝑠(𝛽)) (5)

𝜓̈ =
1

𝐼𝑧
𝑀𝑧 (6)

For this system sum of forces acting on vehicle in each direction can be derivated as:

𝐹𝑥 = 𝐹𝑥𝑓
cos(𝛿𝑓) − 𝐹𝑦𝑓

sin(𝛿𝑓) + 𝐹𝑥𝑟
cos(𝛿𝑟) − 𝐹𝑦𝑟

sin(𝛿𝑟) (7)

𝐹𝑦 = 𝐹𝑥𝑓
sin(𝛿𝑃) + 𝐹𝑦𝑓

cos(𝛿𝑓) + 𝐹𝑥𝑟
sin(𝛿𝑟) + 𝐹𝑦𝑟

cos(𝛿𝑟) (8)

𝑀𝑧 = 𝑙𝑓(𝐹𝑥𝑓
sin(𝛿𝑓) + 𝐹𝑦𝑓

cos(𝛿𝑓)) − 𝑙𝑟(𝐹𝑥𝑟
sin(𝛿𝑟) + 𝐹𝑦𝑟

cos(𝛿𝑟)) (9)

Where δf , δr are steering angles of the front and the rear wheel, lf , lr is the distance from the

vehicle’s COG to the front and rear axle. Forces FYf , FYr, FXf , and FXr are forces acting on tires.

The tire dynamics is described by famous tire model Pacejka Magic formula, which can be
used for estimation not only the lateral and longitudinal forces’ impact on a tire, but also all the torques
acting on a wheel around all axis. It has a straightforward calculation, and the same formula is used to
estimate all the forces and torques using different sets of coefficients. The general Simplified Pacejka
Magic formula has the following equation:

𝐹 = 𝐷𝐹𝑍sin (𝐶 𝑎𝑟𝑐𝑡𝑔(𝐵𝛼 − 𝐸(𝐵𝛼 − 𝑎𝑟𝑐𝑡𝑔(𝐵𝛼)))) (10)

Where D, C, B, and E is the set of shaping coefficients, FZ is a wheel-load and α is tire side slip

angle.

All these equation were implemented in single track Simulink model to verify performance of

the derivated vehicle model.

B Twin track model derivation

For twin track model, in our previous work with Račkay [10], we developed Efremous single

track model to cover all four wheels of vehicle. This model is based on the same three equations

motion (1), (2) and (3), however in equation of acting forces (7), (8) and (9) we expand wheels ele-

ments from front f and rear r wheel to front right fr, front left fl and rear right rr and left rl wheels to

cover remain dynamics. Expanded equations are in form:

 Dávid Mikle, Juraj Račkay

46

 𝐹𝑥 = 𝐹𝑥𝑃𝑃

cos(𝛿𝑃𝑃) + 𝐹𝑥𝐿𝑃
cos(𝛿𝐿𝑃) + 𝐹𝑥𝑃𝑍

cos(𝛿𝑃𝑍) + 𝐹𝑥𝐿𝑍
cos(𝛿𝐿𝑍)

− 𝐹𝑦𝑃𝑃
sin(𝛿𝑃𝑃) − 𝐹𝑦𝐿𝑃

sin(𝛿𝐿𝑃)

− 𝐹𝑦𝑃𝑍
sin(𝛿𝑃𝑍) − 𝐹𝑦𝐿𝑍

sin(𝛿𝐿𝑍)
(11)

𝐹𝑦 = 𝐹𝑥𝑃𝑃
𝑠𝑖𝑛(𝛿𝑃𝑃) + 𝐹𝑥𝐿𝑃

𝑠𝑖𝑛(𝛿𝐿𝑃) + 𝐹𝑥𝑃𝑍
𝑠𝑖𝑛(𝛿𝑃𝑍) + 𝐹𝑥𝐿𝑍

𝑠𝑖𝑛(𝛿𝐿𝑍)

+ 𝐹𝑦𝑃𝑃
𝑐𝑜𝑠(𝛿𝑃𝑃) + 𝐹𝑦𝐿𝑃

𝑐𝑜𝑠(𝛿𝐿𝑃)

+ 𝐹𝑦𝑃𝑍
𝑐𝑜𝑠(𝛿𝑃𝑍) + 𝐹𝑦𝐿𝑍

𝑐𝑜𝑠(𝛿𝐿𝑍)
(12)

𝑀𝑧 = 𝑙𝑃{𝐹𝑥𝑃𝑃
𝑠𝑖𝑛(𝛿𝑃𝑃) + 𝐹𝑦𝑃𝑃

𝑐𝑜𝑠(𝛿𝑃𝑃) + 𝐹𝑥𝐿𝑃
𝑠𝑖𝑛(𝛿𝐿𝑃)

+ 𝐹𝑦𝐿𝑃
𝑐𝑜𝑠(𝛿𝐿𝑃)}

− 𝑙𝑍{𝐹𝑥𝑃𝑍
𝑠𝑖𝑛(𝛿𝑃𝑍) + 𝐹𝑦𝑃𝑍

𝑐𝑜𝑠(𝛿𝑃𝑍)

+ 𝐹𝑥𝐿𝑍
𝑠𝑖𝑛(𝛿𝐿𝑍) + 𝐹𝑦𝐿𝑍

𝑐𝑜𝑠(𝛿𝐿𝑍)}

+ 𝑏𝑃{𝐹𝑥𝑃𝑃
𝑐𝑜𝑠(𝛿𝑃𝑃) − 𝐹𝑦𝑃𝑃

𝑠𝑖𝑛(𝛿𝑃𝑃)

+ 𝐹𝑥𝑃𝑍
𝑐𝑜𝑠(𝛿𝑃𝑍) − 𝐹𝑦𝑃𝑍

𝑠𝑖𝑛(𝛿𝑃𝑍)}

− 𝑏𝐿{𝐹𝑥𝐿𝑃
𝑐𝑜𝑠(𝛿𝐿𝑃) − 𝐹𝑦𝐿𝑃

𝑠𝑖𝑛(𝛿𝐿𝑃)

+ 𝐹𝑥𝐿𝑍
𝑐𝑜𝑠(𝛿𝐿𝑍) − 𝐹𝑦𝐿𝑍

𝑠𝑖𝑛(𝛿𝐿𝑍)}

(13)

Again all these equation were implemented in twin track Simulink model to verify performance

of the derivated vehicle model.

3 Vehicle Model Identification

Vehicle model identification is an alternative process to model derivation, where you identify

models with different representation from measured data. It is recommended to start by estimating the

parameters of simpler models structures and if the model performance is poor, you gradually increase

the complexity of the model structure. Ultimately, you choose the simplest model that best describes

the dynamics of your system.

Vehicle itself is a complex systems with multiple inputs and multiple outputs (MIMO) and

such systems are often more challenging to model because of couplings between several inputs and

outputs. MIMO models are often covered via state-space representations, since the model structure

complexity is easier to deal with [11]. State-space model use state variables to describe a system by a

set of first-order differential or difference equations, rather than by one or more nth-order differential

or difference equations. The general state-space description has the following form:

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (14)

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (15)

(14) is called state equation with state vector x, (15) is output equation, u is input vector, y is output

vector, coefficient A is system matrix, B is control input matrix, C is output matrix and D is feedfor-

ward matrix.

The state-space model structure is a good choice for quick estimation because it requires only

one user input, the model order, n. In Matlab, model identification is supported in system identification

toolbox [11] with user-friendly GUI.

In this work we identified five state space models of 3rd, 4th, 5th, 6th and 7th model order from

measured experiments.

 Comparison of First-Principles and Experimental Vehicle Models

47

4 Experiments

For experiments we used conventional vehicle with front wheel drive, equipped with multiple

sensors. For position measurements was used self-build RTK GNSS receivers witch absolute accuracy

of approx. 20mm, attached on each axle. We modified receiver’s chips to be able to perform measure-

ment at 20Hz frequency, what is in navigation systems pretty high performance. We also used a 9

DOF inertial measurement unit from XSENSE. As a vehicle output we measured accelerations and

angular velocities in each directions witch frequency of 100 Hz. Position of used sensors is shown at

following pictures:

Fig.2. Position of GNSS antennas (Top), position of inertial measurement unit (Bottom).

In experiments we also performed a reading of CAN Bus of vehicle. It required a small inter-

vention to vehicle’s electric wiring, because a Volkswagen concern cars have switchable CAN bus

on OBD2 connector, which means that it is not possible to read any data directly from it, because it

requires a data polling from CAN Bus gateway. So we connected directly on CAN BUS wires in

dashboard connectors and soldered wires to them. For data logging we used a self-build control unit

with CAN transceiver with C++ library build for parse all data.

Fig.3. Trajectory of constant steer maneuver for multiple steering angles.

 Dávid Mikle, Juraj Račkay

48

As experiments we performed a three different test maneuvers. First we performed a constant

steer drive for different steering wheel angles at about 6 km/h, shown in (Fig.3). From trajectory of

this maneuver we measured the real cornering radius for each steering wheel angle and from Acker-

man geometry we calculated actual steering angles of the wheels. Then by polynomial regression we

identified equation of steering wheel factor characteristic.

Next we performed a step steer maneuver (Fig. 4), where we accelerate with straight wheels

from rest to about 30km/h and then applied a steering step to minus 15 degree. Data from this ma-

neuver we used for model identification in MATLAB.

Fig.4. Trajectory of step steer maneuver.

Finally a third maneuver was single line change (Fig. 5), where we accelerate with straight

wheels from rest to about 60km/h and the applied a minus 7degree input and immediately changed

it to plus 7degree and then back to straight wheel. Data from this maneuver we used for verification

of simulated models outputs.

Fig.5. Trajectory of single line change maneuver.

 Comparison of First-Principles and Experimental Vehicle Models

49

5 Simulation

To verify derivated and identified vehicle models, we have simulated data from single line

change experiment as test maneuver in MATLAB, to simulate the dynamic responses of models. The

aim of this simulation is to verify the accuracy of lateral and longitudinal motion of models.

We simulated this maneuver with single track, twin track and identified state space models

with 3rd – 7th order. Results of line change simulations are shown in the following figures.

Fig.6. Comparison between measured vehicle speed (Left) and yaw rate (Right)

and simulated results from identified State Space model with 3rd order SS3(1st row), 4th order

SS4(2nd row), 5th order SS5(3rd row), 6th order SS6(4th row) and 7th order SS7(5th row).

 Dávid Mikle, Juraj Račkay

50

Fig.7. Comparison between measured vehicle speed (Top) and yaw rate (Bottom)

and simulated results from single and twin track model and SS6.

From (Fig.6) with results of simulation of all identified models we can see that models with

3rd and 4th order (SS3, SS4) has a poor results, where coefficient of determination was negative

number in both simulated outputs. Models with 5th, 6th and 7th order has significantly better results

at simulated Speed, where model SS6 has Kd = 91.82%, what can be considered as great result. Also

these models has slightly better result in simulated Yaw rate, however cause slight oscillations. In

overall, from these results we can consider SS6 as a best identified state space vehicle model.

In (Fig.7) we can see comparison of model SS6, single and twin track model with actual

measured data. From results we can see that derivated single and twin track model can even with

many considered simplification pretty accurately represent longitudinal and lateral motion of vehicle.

Coefficient of determination in simulated Speed for both models is approximately 99% and simulated

Yaw rate is 85.05% for twin track and 93.54% for single track model.

6 Conclusion

The paper presents two most common vehicle model design approaches – a theoretical deri-

vation based on first principles, and experimental identification, and their simulation-based compar-

ison. In the design of any vehicle model, the most important objective is to obtain desired accuracy

considering applied simplifications. Effectiveness accuracy of longitudinal and lateral motion of the

developed models has been verified via line change simulations.

Based on simulation results, we can conclude that the developed single track and twin track

vehicle models work as expected despite having used several simplifications in the theoretical back-

ground. The developed models are now ready to be implemented in the control system of the racing

car of the Slovak formula student team STUBA Green Team.

 Comparison of First-Principles and Experimental Vehicle Models

51

Acknowledgement

The paper was supported by the Ministry of Education, Science and Sport of the Slovak Re-

public under the project KEGA 010STU-4/2023.

References

[1] M. Ehsani, Electric, hybrid, and fuel cell vehicles, introduction. In Transportation technologies

for sustainability pp. 492–493, 2013. Springer New York, ISBN 978-1-4614-5844-9.

2 R. R. McHenry, An analysis of the dynamics of automobiles during simultaneous cornering

and ride motions. Computer-Aided Design, 1(3), pp.19–32, 1969.

https://doi.org/10.1016/S0010-4485(69)80082-5.

3 M. V. Blundell, The modelling and simulation of vehicle handling part 1: Analysis methods.

Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,

213(2), pp. 103–118, 1999. https://doi.org/10.1243/1464419991544090.

[4] M. V. Blundell, The modelling and simulation of vehicle handling part 4: Handling simulation.

Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,

214(2), pp. 71–94, 2000. https://doi.org/10.1243/1464419001544250.

[5] W. Kortm, Review of multibody computer, codes for vehicle system dynamics. Vehicle System

Dynamics, 22(sup1), pp. 3–31, 1993. https://doi.org/10.1080/00423119308969463.

6 S. Hegazy, H. Rahnejat, K. Hussain, Multi-body dynamics in fullvehicle handling analysis.

Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,

213(1), pp. 19–31, 1999. https://doi.org/10.1243/1464419991544027.

7 A. A. Shabana, Dynamics of multibody systems. Cambridge University Press, 2009.

https://doi.org/10.1017/cbo9781107337213.

[8] M. Jaiswal, G. Mavros, H. Rahnejat, P. D. King, A multi-body dynamics approach for the study of

critical handling manoeuvres on surfaces with uneven friction. TU Delft, 2007.

ISBN 9789081176811.

[9] EFREMOV, Denis. Single-Track model derivation. CVUT Praha, (2018).

10 Račkay, J. Matematické modelovanie jazdnej dynamiky vozidla.

bachelor thesis in Slovak language, STU Bratislava, 2020.

11 L. Ljung, System Identification Toolbox User’s guide. MathWorks, 2020.

 Dávid Mikle, Juraj Račkay

52

Authors

M.Sc. Dávid Mikle

Institute of Automotive Mechatronics

Faculty of Electrical Engineering and Information Technology

Slovak University of Technology in Bratislava, Slovakia

david.mikle@stuba.sk

He received the B.Sc. degree in Automotive Mechatronics and the M.Sc. degree

in Applied Mechatronics and Electromobility from the Slovak University of

Technology in Bratislava, Slovakia, in 2016 and 2018. During the M.Sc. degree,

he was part of the slovak formula student team STUBA Green Team. Currently

he is an interrupted Ph.D student in Mechatronic Systems and lecturer in subject

Dynamics of Vehicles at the same university. His research interests include ve-

hicle dynamics modeling and control, applied to electric vehicles.

MSEng. Juraj Račkay

Institute of Automotive Mechatronics

Faculty of Electrical Engineering and Information Technology

Slovak University of Technology in Bratislava, Slovakia

xrackay@stuba.sk

He received the Bc. degree in Automotive Mechatronics and the MSEng. degree

in Applied Mechatronics and Electromobility from the Faculty of Electrical En-

gineering and Information Technology, Slovak University of Technology in

Bratislava, Slovakia, in 2020 and 2022, respectively. Presently, he is a PhD stu-

dent at the same university. His research interests include vehicle dynamics mod-

elling and control of an electric vehicle traction system.

53

International Journal Volume 11, Number 2, December 2022

Information Technology Applications (ITA)

SIMULATION-BASED MODEL CONTROL

USING STATIC HAND GESTURES IN MATLAB

Slavomír Kajan, Jozef Goga

Abstract:

This paper deals with the domain of simulation-based models control using static hand gestures in the

MATLAB environment. The aim of this paper was to design an algorithm for visual static hand gesture

recognition with high classification accuracy. For this recognition task, different convolutional neural

network models (CNN) were tested. For the successful training of CNN, stochastic backpropagation of

error was used. Training of CNN was implemented on the graphic card using toolboxes such as Neural

Network and Parallel Computing from the MATLAB program package. For the training and testing of

CNN a database of 35 static hand gestures was used. The proposed CNN gesture recognition system

has been implemented in the simulation scheme due to the need of setting different model parameters.

Keywords:

Hand gesture recognition, neural networks, graphic card, parallel computing, MATLAB.

ACM Computing Classification System:

Image recognition, artificial intelligence, parallel computing.

1 Principle of Gesture Recognition

The hand gesture recognition itself can be implemented in a several consecutive steps. Gen-

eral scheme of hand gesture recognition system is shown in (Fig.1). In this recognition task, the

Kinect v2 sensor was used.

Fig.1. General scheme of gesture recognition system.

The captured image from the sensors is processed and stored in appropriate form. Subse-

quently, the gesture in an acquired frame may be segmented or image features may be extracted from

the entire input frame [1]. Under the extraction of features, we understand the evaluation of quanti-

tative or statistical indicators which represent given gesture based on the suitable metrics.

 Slavomír Kajan, Jozef Goga

54

It can be the number of stretched fingers, angles between fingers, fingertip markings, finger-

tips positions [3], histograms, Voronoi diagrams, and other statistical and quantitative indicators.

These extracted features are an input to a computational model, whose job is to correctly classify the

given gesture. With regard to the complexity of this task, in this paper we dealt only with the recog-

nition of static hand gestures. Hand gesture recognition and associated problems such as hand seg-

mentation were elaborated in many papers. Some authors have used a color-based image analysis

approach such as a color histogram based on statistical methods [3], thresholding the tints of a color

model [4], or gesture capturing with color gloves [5] that are easier to segment. Approaches based

on depth analysis are in general more successful than color-based methods, but those approaches

assume the hand is the closest object in the frame. One possible solution is mapping from the depth

data to a corresponding part of a color image [3], or hand segmentation based on the distance limited

by color bracelet [6].

Use of the latest deep neural network models does not always improve classification accuracy,

which ranges from 70% - 90%, depending on the specific architecture of the neural network [2][8 -

10]. In this paper, we used different architectures of convolutional neural networks for this challeng-

ing static hand gesture recognition task.

2 Gesture Recognition Using Convolutional Neural Network

The general structure of the convolutional neural network (CNN) is displayed in (Fig.2).

Fig.2. The general architecture of convolutional neural network used for gesture recognition.

Convolutional neural networks are designed specifically for pattern recognition with a large

degree of invariance to shift, change of scale or other forms of distortion. These properties are gained

through learning process. However, the structure of convolutional neural networks involves certain

forms of constraints. The most commonly used types of layers in the network architecture are con-

volutional, pooling, and fully-connected layers. By arranging these computational layers, we create

the overall architecture of the convolutional neural network.

The convolutional layer is the main computing block in the overall network architecture. Its

input is usually 3-dimensional image tensor, which contains 3 color image channels. As the title of

this layer suggests, a discrete convolution of input with the kernel is performed there. When compu-

ting, we move the kernel in the direction of the width and height of the input image with the selected

step, for all their mutual positions, creating a feature map. By learning, these feature maps are acti-

vated when different image patterns are detected, such as edges at a certain angle, color clusters, and

others.

The pooling layer performs sub-sampling of the input tensor, thereby reducing the size of the

feature map, but retaining the most important information contained therein. This greatly reduces the

spatial magnitude of the feature map, as well as the number of parameters and the computational

difficulty of the neural network.

Simulation-Based Model Control Using Static Hand Gestures in MATLAB

55

The neurons in the fully-connected layer of the convolutional network have, as the name sug-

gests, all connections to the neurons in the previous layer. This is, therefore, a classical multilayer

perceptron network. Outputs from convolutional and pooling layers represent high-level features ex-

tracted from input images. These features are an input into the fully-connected layer of the convolu-

tional network, and its role is to correctly classify them.

3 Training and Testing of the Convolutional Neural Network

For the training and testing of CNN a database of 35 static hand gestures was used. This

database contains static gestures of the American Sign Language (ASL), which was changed due to

the dynamic characters "J" and "Z". The database was created by 65 volunteers (60 men and 5

women), which consists of 5 frames per gesture [6]. Overall, we created 175 frames (35 gestures

times 5 frames) for color, infrared and depth images. A total of 525 images per person. The resulting

database has 34 125 images (65 people times 525 frames). Data from 50 people was used in the

training process and data from 15 people was used in the testing process.

These images were then modified into a form suitable for training the convolutional neural

network. In the original color image from the Kinect sensor, with a resolution of 1920x1080 pixels,

we only segmented the hand area. In this way, we created a square image suitable for training with a

resolution of 640x640 pixels. Segmentation of hand gestures was also done for original depth and

infrared frames. The original resolution of 512x424 pixels was adjusted to a gesture frame with a

size of 156x156 pixels.

Fig.3. A preview of frames in the database.

The first tested architecture of CNN (Table 1) consist of three convolutional layers. The sec-

ond tested architecture (Tab.2) has the same number of convolutional layers, but fully-connected

layer with 50% dropout was added. This omission is used to make the neural network better distribute

trained information throughout the network as any neuron may be omitted in the next epoch. The last

tested architecture (Tab.3) has been extended to four convolutional layers, where kernel size is the

same in all layers.

For the successful training of CNN, stochastic backpropagation of error was used [13]. Train-

ing of CNN was implemented on the graphic card using toolboxes such as Neural Network and Par-

allel Computing from the MATLAB program package. In Figure 4 is shown the comparison of clas-

sification score during the training process for all tested neural network architectures. The compari-

son of classification accuracy of those architectures is displayed in Table 4. Examples of learned

features acquired by transition of the random input color image through individual convolutional

layers of trained CNN with architecture A-2 is shown in Figure 5 [6].

 Slavomír Kajan, Jozef Goga

56

Table 1. First architecture of CNN – A-1.

Table 2. Second architecture of CNN – A-2.

Simulation-Based Model Control Using Static Hand Gestures in MATLAB

57

Table 3. Last architecture of CNN – A-3.

Table 4. Comparison of different CNN architectures – classification score (accuracy).

Fig.4. Classification score during the training process for different CNN architectures.

 Slavomír Kajan, Jozef Goga

58

Fig.5. 6 examples of learned features by convolutional layers

of trained CNN with architecture A-2.

4 Simulation-based Model Control Using Static Hand Gesture

4.1 Example of Hand Gesture Recognition Using Kinect SDK

The Kinect functions are accessed using the From Video Device block in the Simulink graph-

ical simulation environment. This block allows you to obtain images from an RGB or depth camera

along with the tracking metadata. For the hand gesture recognition, we used the metadata

HandRightState property, which identifies a recognized right-hand gesture. In (Fig.6) are displayed

hand gestures, which can be recognized by Kinect SDK. In (Fig.7) is shown simulation scheme for

PID control loop, in which setpoint is changed based on a right-hand gesture recognized by the Kinect

sensor [6].

Fig.6. Standard hand gestures of Kinect SDK.

Simulation-Based Model Control Using Static Hand Gestures in MATLAB

59

Fig.7. Simulation scheme for a PID control loop

(setpoint is changed based on a right-hand gesture recognized by the Kinect sensor)

4.2 Example of Hand Gesture Recognition Using CNN

Fig.8. Simulation scheme of water tanks system with PI controllers.

 Slavomír Kajan, Jozef Goga

60

A trained CNN with A-2 architecture was used to control the simulation model. To demon-

strate hand gesture recognition, a simulation model of four independent water tanks with PI control-

lers was created [6]. We designed the entire control system scheme according to the Model-View-

Controller (MVC) software architecture. MVC divided the program into 3 independent units (Simu-

lation Model, Visualization, Controller) with minimal interconnections.

The simulation model is represented by a simulation scheme of four independent water tanks

(Fig.8). In the simulation scheme are four independent control loops with PI controllers for level

control in tanks. Inputs to the simulation model are the desired level values (SetPoints) in the tanks.

For a better presentation of the results achieved and the current state of simulation, a simple

visualization was created (Fig.9). Simulation model is connected to the water tank visualization

(Fig.8), to which it sends the desired level (SP) and current level values in the individual tanks. Ad-

ditionally, active tank number (ActiveTank), new desired value (ActiveSetPoint) and simulation time

are sent to the visualization subroutine.

Fig.9. Visualization of the water tanks.

The last part of the MVC is a controller, that is linked to all MVC, Kinect sensor, and the

neural network. Controller is running independently from the simulation. In the cycle, images and

metadata from the Kinect sensor are collected and the simulation-based model is controlled. Both

hands are used in the control process. The left hand is used to control parameter changes. Actions

such as start and stop of right hand recognition, confirmation, and cancellation of set points are con-

trolled by lefthand gesture. The right-hand gesture controls the desired level value of the selected

tank. In the first phase of the simulation, the gesture symbolizing a particular tank is expected (Fig.9).

When the gesture is recognized, the algorithm comes into the second phase - adjusting the desired

level on the selected tank. Setpoint value can by controlled by ASL alphabet gestures from A to I.

The main subject of the final simulation test was to verify accuracy of the gesture recognition.

We have created a test script with 14 gestures. 3 people participated on the testing phase, and every-

one repeated the test 3 times. The average gesture recognition accuracy was 92.86%.

Simulation-Based Model Control Using Static Hand Gestures in MATLAB

61

5 Conclusion

Various architectures of CNN were tested in this paper. The CNN classification models

showed a very good classification accuracy. The proposed CNN gesture recognition system has been

implemented in the simulation scheme due to the need of setting different model parameters. After

successful testing of different CNN architectures, we verified the suitability of their use in the static

hand gesture recognition task such as simulation-based control.

Acknowledgement

The research described in this paper was done within the project No. 1/0202/23 of the Slovak

Grant Agency VEGA.

References

[1] P. K. Pisharady, M. Saerbeck. Recent methods and databases in vision-based hand gesture

recognition: A review. Computer Vision and Image Understanding, 2015, 141: 152-165.

2 A. Tang, K. Lu, Y. Wang, J. Huang and H. Li, A realtime hand posture recognition system using

deep neural networks., ACM Transactions on Intelligent Systems and Technology (TIST), 2015,

6(2):21

3 M. Van den Bergh and L. Van Gool. Combining rgb and tof cameras for real-time 3d hand

gesture interaction. Applications of Computer Vision (WACV), 2011 IEEE Workshop on. IEEE,

6–72.

[4] M. Fagiani, E. Principi, S. Squartini, and F. Piazza. A new system for automatic recognition

of italian sign language. Neural Nets and Surroundings, 2013, 69–79.

[5] R. Y. Wang and J. Popović. Real-time hand-tracking with a color glove,

ACM transactions on graphics (TOG), 2009, vol. 28, 63

6 Z. Ren, J. Yuan, and Z. Zhang. Robust hand gesture recognition based on fingerearth mover’s

distance with a commodity depth camera. Proceedings of the 19th ACM international conference

on Multimedia, 2011, ACM:1093–1096

7 S. Kajan, D. Pernecký, A. Hamad. Hand gesture recognition using multilayer perceptron network.

23th Annual Conference Proceedings, Technical Computing Prague, 2015

[8] G. Strezoski, D. Stojanovski, I. Dimitrovski, and G. Madjarov.

Hand gesture recognition using deep convolutional neural networks.

[9] P. Molchanov, S. Gupta, K. Kim, and J. Kautz. Hand gesture recognition with 3D convolutional

neural networks, 2015, Proceedings of the IEEE conference on computer vision and pattern

recognition workshops, 1–7.

10 P. Barros, S. Magg, C. Weber, and S. Wermter. A multichannel convolutional neural network

for hand posture recognition. 2014, International Conference on Artificial Neural Networks,

403–410.

11 F. Špaldoň. The control of simulation models using Kinect sensor.

Bachelor thesis FEI STU in Bratislava, 2017, (in Slovak language)

[12] J. Goga, F. Špaldoň, S. Kajan, J. Pavlovičová, and M. Oravec. Static hand gesture database

of FEI STU Bratislava. http://www.uim.elf.stuba. sk/kaivt/MLgroup, 2017.

[13] M. Beale, M. Hagan, H .Demuth. Neural Network Toolbox, User’s Guide, 2017

 Slavomír Kajan, Jozef Goga

62

Authors

Ing. Slavomír Kajan, PhD.

Institute of Robotics and Cybernetics,
Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava, Slovakia

slavomir.kajan@stuba.sk

His research interests artificial intelligence, neural networks and applications

of AI methods in medicine, control systems and robotics.

Ing. Jozef Goga, PhD.

Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava, Slovakia

jozef.goga@stuba.sk

Currently at the Institute of Robotics and Cybernetics at the Faculty

of Electrical Engineering and Information Technology of STU in Bratislava.

His research interests include artificial neural networks, computer vision

and biometrics.

63

International Journal Volume 11, Number 2, December 2022

Information Technology Applications (ITA)

DETECTION OF PARKINSON’S DISEASE

WITH MACHINE LEARNING SUPPORT

Zuzana Képešiová, Štefan Kozák, Eugen Ružický,

Alfréd Zimmermann, Richard Malaschitz

Abstract:

Parkinson’s disease (PD) is a neurodegenerative disorder causing partial or complete loss of motor

reflexes and speech. It affects the patients significantly in their daily life. The accurate diagnosis of

PD is quite complex, requires a lot of resources, and equipment and is time-consuming for diagnosis,

especially in its initial stage’s occurrence of the disease. To help the medical experts and researchers

diagnose PD, we developed a machine learning approach based on the simple descriptive tasks cap-

tured in audio on the smartphone. The dataset for demonstrations consists of over 1500 patients with

approximately 9% of patients diagnosed with PD. Hence the imbalance of the dataset the evaluation

metrics such as Mathews correlation coefficient (MCC), sensitivity - specificity, and ROC curve were

picked to describe the selected machine learning algorithms performance. The analysis of tested re-

sults in a single approach resulting with 73.49% (52.53% - 91.41%) MCC.

Keywords:

Machine learning, medical voice recordings, Parkinson disease, early detection, classification.

ACM Computing Classification System:

Machine learning.

1 Introduction

Parkison’s disease (PD) is the second most common neurological disease, right after Alz-

heimer disease. At present, there is no cure nor a known root for PD, only a treatment, that can ease

the symptoms and increase the quality of life of those affected. The symptoms of PD might demon-

strate as problems with movement when the person is slow or even sometimes seems to be still. A

well-known sign is rigidity (especially wrist, shoulder, and neck), and imbalance of neurotransmit-

ters, dopamine, and acetylcholine. PD is mostly a movement disorder, but other weakenings also

commonly develop, including psychiatric problems such as depression and dementia. Other notice-

able sign of PD is the quality of speech.

The association of speech disorders with Parkinson’s disease has been verified in various

studies [1] [2]. Other studies have shown the progression of the disease is linked to a decrease in

voice performance over time [3]. Therefore, the speech samples are ideal for the detection of the

PD, while the data can be easily collected. Studies on the PD are usually focused on voice prob-

lems. Such practices also assist in the early diagnosis of the disease. People with Parkinsonism

have vocal disorders affecting their speech in areas like volume level, the correct pronunciation of

syllables, etc [4].

 Zuzana Képešiová, Štefan Kozák, Eugen Ružický, Alfréd Zimmermann, Richard Malaschitz

64

A Parkinson disease detection in machine learning related studies is being detected from

various data sources such as handwriting database [5], dataset consisting of local field potential

(LFP) recordings [6], gait features [7], single-photon emission computed tomography (SPECT)

images [8], vocal recordings converted into images [9], and speech recordings converted into fea-

tures [10]. In the previous study [11] we have shown a first comparative analysis of the machine

learning algorithms for the early detection of PD, while in this paper we focus on a more specific

treats between PD and speech symptoms with enlarged dataset focused on more specific tasks.

The paper is organized as follows. Section 2 describes the obtained dataset and its features,

and introduces machine learning methods for classification, scaling methods of data, sampling

methods for imbalanced datasets, and feature selection methods. Section 3 shows experimental

results for the comparative analysis of proposed machine learning algorithms in a combination of

sampling methods, scaling methods, and selection of features.

2 Machine Learning Methods

This section navigates through technical information about the analysis and the developed

mathematical model. It starts with the dataset and its description, continues with data scaling meth-

ods, hence the imbalance of the dataset it continues with the sampling methods and finishes with

the proposed machine learning algorithms to be analyzed.

A Dataset and Features

The collected dataset is containing over 1500 recorded samples. The data is consisting of 2

main data sources: basic information about the patient such as age, sex, education, etc; speech re-

cordings statistics such as number of gaps, length of the gaps between words, number of used

words, phonetism, etc; resulting in over 66 000 various features. The features are being computed

from vocal recordings of subjects describing the seen images shown by the examiner. There are 2

types of images: small (62 images) and big (5 images). While small images depict one object or

action, the big images consist of sceneries, which require more attention to detail. The dataset con-

taines subjects falling into one or more of following groups:

• No neurodegenerative disorder

• Mild Cognitive Impairment (MCI)

• Alzheimer disease

• Parkinson disease

• Other neurodegenerative disorder

The dataset was cleaned up of low-quality recordings to ensure the transformation algo-

rithms to extract the features correctly. Later, the subjects with diagnosed MCI and / or Alzheimer

disease were filtered out of the dataset for early detection of Parkinson disease experiments. The

dataset was filtered not only horizontally, but also vertically by selecting only 40 small images and

2 big images for the experiments.

B Scaling Methods

Many machine learning algorithms require scaling the input data to converge to the opti-

mum as fast and smooth as possible. During the experimentation we used several different scaling

methods.

Machine Learning for Early Detection of Parkinson’s Disease

65

Standard scaler, also known as z-score, standardize features by removing the mean and scal-

ing to unit variance.

Min-max scaler transforms given values to fit into a given range set up to <0,1>.

Max-abs scaler changes each feature by its maximum absolute value resulting in values set

up in a maximum range of <-1,1>.

Robust scaler removes the median and scales the data according to the quantile range, a

measure of statistical dispersion

A Quantile transformer maps a variable’s probability distribution to another probability dis-

tribution. The quantile function ranks or smooths out the relationship between observations and can

be mapped onto other distributions, such as the uniform or normal distribution [12].

Yeo–Johnson transformer applies a transformation to stabilize variance and to make data

more normal distribution-like, more Gaussian-like. Yeo–Johnson transformation as a power trans-

former can optimize the negative values in contradiction to the Box-Cox transformation method

[13].

L2 normalizer, also known as Euclidean normalization of the group of L^p function spaces,

makes the sum of the squares always be up to 1 normalizing the values.

C Sampling Techniques

The dataset consists of only 9% of positive cases for PD, which makes it unbalanced and

makes it harder for the machine learning algorithms to learn efficiently, as there are not many sam-

ples with the class describing the PD. Some of the available methods dealing with such problem is

to artificially create the underclassed samples or in contradiction, cut numbers of overclassed sam-

ples. In the paper, we propose four techniques, which may help the algorithms to find the links

needed between the features [14].

Random oversampling is a method, where the minority class is evened out by enlarging the

dataset with random copies of the minority class to equal the number of minority class compared to

the majority class.

Synthetic Minority Over-sampling Technique (SMOTE) as the over-sampling method is a

kind of data augmentation, where the minority class samples are not only randomly copied but are

synthetically created. SMOTE picks samples close in the feature space from the minority class

based on K-Neighbors and artificially creates a new sample with the feature values lying between

the neighbors [15].

Adaptive Synthetic algorithm (ADASYN) oversample the dataset in a similar way as

SMOTE as it is its extension. In contradiction to SMOTE, ADASYN generates synthetic samples

inversely proportional to the density of the samples in the underclass area [16].

TomekLinks is in contradiction to an undersampling technique, where the majority class

lowers the number of samples by deletion. TomekLinks uses the modified Condensed Nearest

Neighbor method to choose which samples to delete. This modification creates so-called Tomek-

link pair of the samples with different output classes and together they have the smallest Euclidean

distance to each other in the feature space. This small distance creates close neighbors which im-

plies high noise samples or very close samples to the minority class and therefore they are therefore

removed [17].

 Zuzana Képešiová, Štefan Kozák, Eugen Ružický, Alfréd Zimmermann, Richard Malaschitz

66

D Machine Learning Algorithms

For the experiments we propose the comparison of the following machine learning algo-

rithms: Extremely randomized trees, Random Forest, Linear regression, Logistic regression, Ridge

regression, Passive Aggressive, Support vector classifier (SVC), Stochastic gradient descent

(SGD), Light gradient-boosting machine (LGBM), Perceptron, Linear discriminant analysis (LDA),

and k-nearest neighbors (KNN).

Extremely randomized trees propose an ensemble method of randomizing strongly both at-

tribute and cut-point choice while splitting a tree node. The algorithm fits randomized decision

trees on various batches of the dataset and utilizes averaging to improve the outcome accuracy [18].

The next tree-based method is called Random Forest. It utilizes the ensembling of decision

trees method. In a classification task, the result of a random forest depends on most of the predicted

class from all the trees of the forest [19].

The second class of machine learning algorithms is well known as linear algorithms. Linear

algorithms predict the outcome of the data by a linear combination of the features and compute the

weight of each feature to what extent it affects the predicted outcome. The best known is Linear

regression, which fits the linear model with weights to minimize the residual sum of squares be-

tween the samples from the dataset and the predicted outcomes. Linear regression predicts the out-

come value, which may lay outside of range <0,1> and therefore the input must be scaled properly.

Logistic regression is estimating a probability of the outcome and therefore is used for the

classification problem more frequently. The logistic regression sums the weighted input and passes

it through the sigmoid activation function resulting in a value in the range of <0,1>.

A Ridge regression extends the typical linear regression augmented by a penalty on the size

of the coefficients resulting in a machine learning algorithm used for solving a problem of highly

correlated independent variables.

For large-scale learning, there is a subclass of linear algorithms called Passive Aggressive.

As the name of the subclass denotes, it is composed of two main parts: passive – if the prediction is

correct, keep the model as it is; aggressive – on the other hand, if the prediction is not correct, then

update the model. Passive Aggressive models use a regularization parameter to penalize the model

in a case of an incorrect prediction [20]. In this comparative analysis, we chose a Passive Aggres-

sive model utilizing a hinge loss function.

A support vector machine (SVM) is a machine learning method used for a large variety of

tasks, which includes a classification problem ending in the term Support vector classifier (SVC).

SVM maps the training samples to points in the space in order to maximize the gaps between given

categories. The samples to be predicted are later mapped into the same space and depending on

which side of the gap they fall the gap they belong to.

Gradient descent is an optimization method, where the main technique is a performance of

minimizing cost function J(θ) with the parameter θ updating parameters in the reverse direction of

the gradient of the cost function ∇_θ J(θ) with respect to the parameters [21]. In the study, we used

an SVM with Stochastic gradient descent (SGD).

Light gradient-boosting machine (LGBM) is based on decision tree algorithms. LGBM im-

plements a highly optimized histogram-based decision tree learning algorithm. The LightGBM

algorithm utilizes two novel techniques called Gradient-Based One-Side Sampling (GOSS) and

Exclusive Feature Bundling (EFB) which allow the algorithm to run faster while maintaining a

high level of accuracy [22].

Perceptron is an algorithm used as a classifier. In a binary classification problem, it maps the

input vector onto a single binary output value. The output value depends on the sum of weights

multiplied with the input in a dot product manner regularized with the bias factor [21].

Machine Learning for Early Detection of Parkinson’s Disease

67

A Linear discriminant analysis (LDA) tries to find a projection vector that can enlarge the

distance of samples from different classes and reduce the distance of samples from the same class

[23]. It may be used not only for a classification task but also for a dimensional reduction with the

use of covariance parameters.

A possibility how classifying the samples is to place them into one of the defined groups.

The groups might be created by a clustering algorithm known as the k-nearest neighbors (KNN)

algorithm. In a contradiction to the previous algorithms, a KNN is a non-parametric supervised

learning method, wherein in a classification task the goal is to assign the provided sample to the

class based on the votes of its n closest neighbors and their class reference [24].

3 Experiments and Results

A Evaluation Metrics

Due to the high imbalance of the used dataset conventional evaluation metrics would not de-

scribe the efficiency of the trained model accurately. Therefore, we utilized the following evaluation

metrics: Matthew’s correlation coefficient (MCC), precision, and recall. An MCC is based on a con-

fusion matrix and can be described as accuracy for the imbalanced dataset. The specificity metric

defines how many negative samples were predicted correctly, while the sensitivity metric describes

how many positive samples have been predicted correctly. The evaluation metrics are defined by the

following formulas:

 MCC =
𝑡𝑝 × 𝑡𝑛−𝑓𝑝 ×𝑓𝑛

√(𝑡𝑝+𝑓𝑝)(𝑡𝑝+𝑓𝑛)(𝑡𝑛+𝑓𝑝)(𝑡𝑛+𝑓𝑛)
 , (1)

 Specificity =
𝑡𝑛

𝑡𝑛+𝑓𝑝
 , (2)

 Sensitivity =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
 , (3)

𝑡𝑛 denotes true negatives, 𝑡𝑝 are true positives, 𝑓𝑛 are false negatives, 𝑓𝑝 are false positives [25]

B Experimental Results

The provided dataset of medical voice recordings transformed into the statistics combined

with the basic information about patient with imbalanced data distribution over the Parkinson’s dis-

ease categorization with 9% of positive and 91% of negative cases was divided into training and

validation subsets in ratio of 80% training - 20% validation data 5 times in total utilizing stratified

cross validation. The data split via stratified cross-validation ensures all samples to be included in

validation split and provides better understanding of the absolute results of the algorithms. The data

were divided with age and neurodegenerative disorder in mind.

(Tab.1) is providing a table of the 20 best results for the combination of the scaling method,

the machine learning algorithm, and the sampling method. The results are sorted by the total MCC

from the highest to lowest. The total values of the provided metrics are computed based on the pre-

diction of the samples, while the samples were in the validation fold. The ranges of the metrics are

computed across the cross-validation folds.

Regardless of the sampling method, the best results yields Linear Regression scaled by Quan-

tile Transformer. For this Algorithm, the best sampling method is ADASYN. Other valuable algo-

rithms used for successful early detection of Parkison’s disease are Ridge, and LGBM regardless of

the sampling method, and SVM, LDA and Logistic Regression in combination with None or

TomekLinks sampling method and in use of Quantile Transformer. Overall, Quantile Transformer

has proven to be the best scaling method for this task, especially in a combination with Linear Re-

gression.

 Zuzana Képešiová, Štefan Kozák, Eugen Ružický, Alfréd Zimmermann, Richard Malaschitz

68

Table 1. comparative analysis results of selected best 20 settings.

Scaling

Method

ML

Algorithm

Sampling

Method

Accuracy MCC Sensitivity Specificity

Quantile
Transformer

Linear
Regression

ADASYN
0.9434 (0.913-

0.9826)
0.7349 (0.5253-

0.9141)
0.7753 (0.4285-

0.8928)
0.9664 (0.9257-

0.995)

Quantile

Transformer

Linear

Regression
None

0.9452 (0.913-

0.9782)

0.7336 (0.5253-

0.8969)

0.7391 (0.4285-

0.9259)

0.9733 (0.9257-

0.995)

Quantile
Transformer

Linear
Regression

Random Over
Sampler

0.9434 (0.913-
0.9739)

0.7298 (0.5253-
0.8741)

0.7536 (0.4285-
0.8928)

0.9693 (0.9356-
0.9852)

Quantile

Transformer

Linear

Regression
TomekLinks

0.9426 (0.9043-

0.9782)

0.7265 (0.5161-

0.8969)

0.7536 (0.4642-

0.9259)

0.9683 (0.9207-

1.0)

Quantile

Transformer

Linear

Regression
SMOTE

0.9408 (0.9043-

0.9695)

0.7253 (0.5253-

0.8614)

0.7753 (0.4285-

0.9285)

0.9634 (0.9158-

0.9852)

Quantile
Transformer

Ridge TomekLinks
0.9391 (0.9043-

0.9608)
0.6909 (0.4856-

0.7989)
0.6521 (0.4285-

0.8571)
0.9782 (0.9603-

1.0)

Quantile

Transformer

LGBM

Regressor
ADASYN

0.94 (0.9173-

0.9739)

0.6841 (0.5478-

0.8691)

0.5724 (0.4285-

0.7777)

0.9901 (0.9801-

1.0)

Quantile
Transformer

SVM TomekLinks
0.9373 (0.8956-

0.9608)
0.6833 (0.4208-

0.8047)
0.6521 (0.3571-

0.9285)
0.9762 (0.9554-

0.995)

Quantile

Transformer

Linear

Discriminant
Analysis

None
0.9382 (0.9-

0.9652)

0.6806 (0.4538-

0.8228)

0.6159 (0.3928-

0.8571)

0.9822 (0.9653-

1.0)

MaxAbs

Scaler

LGBM

Regressor
SMOTE

0.9382 (0.9173-

0.9565)

0.6795 (0.5744-

0.7798)

0.6086 (0.4814-

0.8214)

0.9832 (0.9702-

1.0)

Quantile

Transformer

LGBM

Regressor
TomekLinks

0.9382 (0.9043-

0.9608)

0.6748 (0.4395-

0.8066)

0.5724 (0.2142-

0.75)

0.9881 (0.9653-

1.0)

MaxAbs
Scaler

LGBM
Classifier

TomekLinks
0.9382 (0.9086-

0.9565)
0.6725 (0.4846-

0.7746)
0.5434 (0.3571-

0.6428)
0.992 (0.9801-

1.0)

MaxAbs

Scaler

LGBM

Regressor
ADASYN

0.9365 (0.9043-

0.9521)

0.6725 (0.4613-

0.7798)

0.6159 (0.3571-

0.8214)

0.9802 (0.9702-

0.9901)

Standard

Scaler

LGBM

Regressor
ADASYN

0.9365 (0.9086-

0.9608)

0.6725 (0.5046-

0.8066)

0.6159 (0.4285-

0.7777)

0.9802 (0.9554-

1.0)

Quantile

Transformer

Linear

Discriminant
Analysis

TomekLinks
0.9356 (0.9-

0.9608)

0.6714 (0.4538-

0.7982)

0.6304 (0.3928-

0.8571)

0.9772 (0.9554-

0.995)

Quantile

Transformer

Logistic

Regression
TomekLinks

0.9356 (0.8956-

0.9608)

0.6686 (0.4208-

0.7989)

0.6159 (0.3571-

0.8571)

0.9792 (0.9653-

1.0)

Quantile
Transformer

Ridge ADASYN
0.9365 (0.9-

0.9608)
0.6678 (0.4401-

0.7989)
0.5869 (0.3571-

0.7857)
0.9841 (0.9702-

1.0)

Quantile

Transformer
Ridge None

0.9365 (0.9-

0.9608)

0.6678 (0.4401-

0.7989)

0.5869 (0.3571-

0.7857)

0.9841 (0.9702-

1.0)

Quantile

Transformer
Ridge

Random Over

Sampler

0.9365 (0.9-

0.9608)

0.6678 (0.4401-

0.7989)

0.5869 (0.3571-

0.7857)

0.9841 (0.9702-

1.0)

Quantile
Transformer

Ridge SMOTE
0.9365 (0.9-

0.9608)
0.6678 (0.4401-

0.7989)
0.5869 (0.3571-

0.7857)
0.9841 (0.9702-

1.0)

Machine Learning for Early Detection of Parkinson’s Disease

69

Fig.1. ROC curve of a combination of Quantile Transformer sampling method,

Linear Regression machine learning. algorithm and ADASYN sampling method.

Fig.2. Confusion matrix of the selected model,

linear regression with Quantile transformed data

with ADASYN sampling method used.

(Fig.1) shows ROC curve of a combination of Quantile Transformer sampling method,

Linear Regression machine learning algorithm and ADASYN sampling method. ROC curve shows

a great decision skill of the selected algorithm when keeping a high true positive rate while keeping

low false positive rate.

(Fig.2) shows a confusion matrix of the selected combination of Quantile Transformer

sampling method, Linear Regression machine learning algorithm and ADASYN sampling method.

As it is depicted on the cinfusion matrix, we can see the algorithm is very succcesfull determine the

healthy patient, while keeping the high performance detecting a patient with PD.

 Zuzana Képešiová, Štefan Kozák, Eugen Ružický, Alfréd Zimmermann, Richard Malaschitz

70

4 Conclusion

In this paper, performance evaluation of machine learning algorithms in a combination with

sampling and scaling methods was proposed and verified done. The aim of analysis the

performance evaluation is to find the best modified algorithm available to solve the complex

problem, and in this study for early detection of Parkinson’s disease based on voice recordings of

patients describing the images. These patients were describing the provided images divided into

two groups: small and big images, differentiating on a scale of the descriptive manner. These voice

recordings showing the light mental exercises were preprocessed and statistically described in a

combination with basic information about a patient available. Out of all provided machine learning

algorithms, and scaling and sampling methods the best performing model was chosen as a linear

regression with a threshold with a Quantile transformed input data and with ADASYN sampling

method resulting in 94.34% (91.30%-98.26%) accuracy, 73.49% (52.53%-91.41%) MCC, 77.53%

(42.85%-89.28%) sensitivity, and 96.64% (92.57%-99.50%) specificity being able to successfully

predict the Parkinson’s disease in most of the positive subjects and with suspicion for healthy

subjects to be monitored and followed up with a doctor. The proposed approach and efficient

algorithmic processing can be a suitable and effective means for early diagnosis of

neurodegenerative diseases.

Acknowledgement

This paper was supported by Early Warning of Alzheimer and other neurodegenerative

diseases from Operational Programme Integrated Infrastructure (EU Cohesion Fund) - Code n.

ITMS2014+/313022V631 and by Research of Advanced Algorithms and Modeling of Processes in

Domains of Applied Informatics from Grant Agency Academia Aurea (GAAA) - Code n.

GAAA/2022/1.

References

[1] J. Gamboa, F. J. Jiménez-Jiménez, A. Nieto, J. Montojo, M. Ortí-Pareja, J. A. Molina, E. García-Albea

and I. Cobeta, "Acoustic voice analysis in patients with Parkinson's disease treated with dopaminergic

drugs," J Voice, pp. 314-320, September 1997.

[2] A. K. Ho, J. L. Bradshaw and R. Iansek, "For better or worse: The effect of levodopa on speech

in Parkinson's disease," Mov Disord., vol. 23, no. 4, pp. 574-580, 15 March 2008.

[3] B. Harel, M. Cannizzaro and P. J. Snyder, "Variability in fundamental frequency during speech

in prodromal and incipient Parkinson's disease: a longitudinal case study," Brain Cogn.,

vol. 56, no. 1, pp. 24-29, October 2004.

[4] B. Sakar , M. Isenkul, C. Sakar, A. Sertbas, F. Gurgen, S. Delil, H. Apaydin and O. Kursun,

"Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings"

IEEE J Biomed Health Inform, vol. 17, no. 4, pp. 828-834, 2013.

[5] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal and M. Faundez-Zanuy,

"Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease"

Artificial Intelligence in Medicine, vol. 67, pp. 39-46, 2016.

[6] A. T. Connolly, W. F. Kaemmerer, S. Dani, S. R. Stanslaski, E. Panken, M. D. Johnson and T. Denison,

"Guiding deep brain stimulation contact selection using local field potentials sensed by a chronically

implanted device in Parkinson's disease patients"

in 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.

Machine Learning for Early Detection of Parkinson’s Disease

71

[7] F. Wahid, R. K. Begg, C. J. Hass, S. Halgamuge and D. C. Ackland, "Classification of Parkinson's

Disease Gait Using Spatial-Temporal Gait Features"

IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 6, pp. 1794-1802, 2015.

[8] T. Pianpanit, S. Lolak, P. Sawangjai, T. Sudhawiyangkul and T. Wilaiprasitporn,

"Parkinson's Disease Recognition Using SPECT Image and Interpretable AI: A Tutorial"

IEEE Sensors Journal, vol. 21, no. 20, pp. 22304 - 22316, 2021.

[9] M. Wodzinski, A. Skalski, D. Hemmerling, J. R. Orozco-Arroyave and E. Nöth, "Deep Learning

Approach to Parkinson’s Disease Detection Using Voice Recordings and Convolutional Neural Network

Dedicated to Image Classification," in 2019 41st Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), 2019.

[10] J. S. Almeida, P. P. Rebouças Filho, T. Carneiro, W. Wei, R. Damaševičius, R. Maskeliūnas and V. H. C.

de Albuquerque, "Detecting Parkinson’s disease with sustained phonation and speech signals using

machine learning techniques," Pattern Recognition Letters, vol. 125, pp. 55-62, 2019.

[11] Z. Képešiová, Š. Kozák, E. Ružický, A. Zimmermann and R. Malaschitz, "Comparative Analysis

of Advanced Machine Learning Algorithms for Early Detection of Parkinson Disease,"

in 2022 Cybernetics & Informatics (K&I), Visegrád, Hungary, 2022.

[12] B. M. Bolstad, R. A. Irizarry, M. Åstrand and T. P. Speed, "A comparison of normalization methods

for high density oligonucleotide array data based on variance and bias," Bioinformatics,

vol. 19, no. 2, pp. 185-193, January 2003.

[13] I.-K. Yeo and R. A. Johnson, "A new family of power transformations to improve normality

or symmetry" Biometrika, vol. 87, no. 4, pp. 954-959, December 2000.

[14] "Training and assessing classification rules with imbalanced data"

Data Mining and Knowledge Discovery, vol. 28, pp. 92-122, 2014.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: Synthetic Minority

Oversampling Technique," Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

[16] H. He, Y. Bai, E. A. Garcia and S. Li, "ADASYN: Adaptive synthetic sampling approach for imbalanced

learning," in IEEE International Joint Conference on Neural Networks, 2008.

[17] D. Devi, S. k. Biswas and B. Purkayastha, "Redundancy-driven modified Tomek-link based

undersampling: A solution to class imbalance," Pattern Recognition Letters, vol. 93, pp. 3-12, 2017.

[18] P. Geurts, D. Ernst and L. Wehenkel, "Extremely randomized trees"

Machine Learning, vol. 63, pp. 3-42, 2006.

[19] K. Polat, "A Hybrid Approach to Parkinson Disease Classification Using Speech Signal: The

Combination of SMOTE and Random Forests," in Scientific Meeting on Electrical-Electronics &

Biomedical Engineering and Computer Science (EBBT), 2019.

[20] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz and Y. Singer, "Online Passive-Aggressive

Algorithms," Journal of Machine Learning Research, vol. 7, pp. 551-585, 2006.

[21] Z. Képešiová, J. Cigánek and Š. Kozák, "Driver Drowsiness Detection Using Convolutional Neural

Networks," in 2020 Cybernetics & Informatics (K&I), 2020.

[22] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu,

"LightGBM: A Highly Efficient Gradient Boosting Decision Tree," in 31st Conference on Neural

Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.

[23] J. Wen, X. Fang, J. Cui, L. Fei, K. Yan, Y. Chen and Y. Xu, "Robust sparse linear discriminant analysis,"

IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 2, pp. 390-403, 2018.

[24] A. R. Lubis, M. Lubis and Al-Khowarizmi, "Optimization of distance formula in K-Nearest Neighbor

method," Bulletin of Electrical Engineering and Informatics, vol. 9, no. 1, pp. 326-338, 2020.

[25] D. Chicco and G. Jurman, "The advantages of the Matthews correlation coefficient (MCC) over F1 score

and accuracy in binary classification evaluation," BMC Genomics, vol. 21, 2020.

 Zuzana Képešiová, Štefan Kozák, Eugen Ružický, Alfréd Zimmermann, Richard Malaschitz

72

Authors

Ing. Zuzana Képešiová, PhD.

Sygic, Ltd.

zuzana.kepesiova@gmail.com

research and applications worker Sygic, Ltd. as machine learning specialist.

Her professional focus is mostly research and programming in intelligent

systems focusing on pattern recognition, optimization, big data analysis

and prediction.

prof. Ing. Štefan Kozák, PhD.

Faculty of Informatics

Pan-European University in Bratislava, Slovakia

stefan.kozak@paneurouni.com

His research interests include system theory, linear and nonlinear control

methods, numerical methods and software for modeling, control, signal

processing, IoT, IIoT and embedded intelligent systems for digital factory

in industry and medicine.

Assoc. Prof. RNDr. Eugen Ružický, PhD.

Faculty of Informatics

Pan-European University in Bratislava, Slovakia

eugen.ruzicky@paneurouni.com

His research interests include applied informatics, system analysis,

modelling, visualisation and applications in medicine.

RNDr. Alfréd Zimmermann

AXON PRO Ltd. Bratislava, Slovakia

zimmermann@axonpro.sk

He is owner and CEO of the company. Professional and scientific interests

include artificial intelligence in general and natural language processing.

Richard Malaschitz

AXON PRO Ltd. Bratislava, Slovakia

richard.malaschitz@axonpro.sk

Research worker at AXON PRO, data preprocessing for research projects.

Information Technology Applications (ITA)

73

List of Reviewers

Issue 2/2022, in alphabetic order

doc. Ing. Petr Drahoš, PhD. Slovak University of Technology in Bratislava, Slovakia

doc. Ing. Oto Haffner, PhD. Slovak University of Technology in Bratislava, Slovakia

prof. ing. Alena Kozáková, PhD. Slovak University of Technology in Bratislava, Slovakia

doc. Ing. Erik Kučera, PhD. Slovak University of Technology in Bratislava, Slovakia

prof. Danica Rosinová, PhD. Slovak University of Technology in Bratislava, Slovakia

