
Pan-European University, Faculty of Informatics

Interim Research Report

Definition of inter-process
communication

of the project

Requirements and formal definition of a low-code

language based on object-centric processes -

LowcodeOCP

Authors:

Gabriel Juhás, Milan Mladoniczky, Juraj Mažári and Tomáš Kováčik

Contact:

gabriel.juhas@paneurouni.com, milan.mladoniczky@paneurouni.com

Funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia

under the project No.

09I03-03-V04-00493

October 1, 2025

Version: v0.1

Abstract

In modelling of business processes, a process is mostly considered as independent, self-

sustainable entity, that works only within its boundaries. But in reality, every activity

is connected in some way to other activities. For this purpose, the modelling language

Petriflow [M M17] introduces inter-process synchronization or also called process commu-

nication. This paper describes fundamentals of influencing one process from another one

and usage of this concept for implementing means of communication between instances of

the same process.

This interim report summarizes the current progress of the task 2.2 of the research

project LowcodeOCP resulting in definition of inter-process communication.

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Contents

Contents i

List of Figures ii

1 Introduction 1

2 Petriflow 2

2.1 Multi-process environment . 4

2.1.1 Infinite instances of the process 5

2.1.2 Application scopes . 5

2.2 Transition synchronization . 6

2.2.1 Selection of the synchronization partners 7

2.3 Summary and outlook . 9

A Supplementary Material 11

i

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

List of Figures

2.1 Petri net defining events of the Petriflow task transition [M M17] 3

2.2 Scopes of a Petriflow application . 6

2.3 Diagram of the transition synchronization 8

2.4 The example of the synchronization action 9

ii

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Chapter 1

Introduction

Business process modelling, also known under the abbreviation BPM, is ever growing

discipline both in the commercial and academic sphere. Nowadays, there is a large number

of modelling languages and tools for them. One of which are Petri nets [J D01]. Petri

nets are the perfect tool for modelling processes in every domain. Thanks to their simple

but expressive nature, they are widely used for creating easy-to-read models of complex

processes. A Petri net is a directed bipartite graph, which nodes are represented as

transition and places. Transitions of the net represent activities or events in a modelled

process. Places, on the other hand, describe conditions for process events to happen. A

Petri net nodes are connected with directed arcs. It is a rule in Petri nets, that an arc can

be drawn only from a place to a transition or from a transition to a place. Arcs directed

from a place to a transition are called input arcs for the transition. In a similar manner,

arcs directed from a transition to a place are called output arcs.

The main advantage of Petri nets and the reason why they are suitable for expressing

complex processes is the option to simulate the execution of a modelled process. Every

Petri net has a marking that describes a state of a process model. The marking is

represented with a number of tokens in net’s places. Each transition of a net can be

executed, or as called in Petri nets, fired when in all input places of the transition is a

sufficient amount of tokens. A transition that can be fired is called enabled transition.

When a transition fires, tokens from all input places are consumed and produced in all

output places of the transition according to connecting arcs. With Petri nets, various

complex processes or procedures, with parallelly executing activities, can be modelled.

In original Petri nets formalism, every model operates only within its own space. In

the real world, one or more events outside of the modelled process can influence the

behaviour of the process. In Petri nets, it can be described as if one process acts as an

actor in another process. With this concept in mind Petriflow modelling language extends

Petri nets by elements to define the desired behaviour of modelled processes. In Petriflow

it is possible to model a group of processes that communicate with each other.

1

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Chapter 2

Petriflow

Petriflow is a modelling language based on Petri nets. It builds upon features of Petri nets

and extends them to provide more tools for modelling complex processes. In existence

of Petri nets, there are numerous extensions of the original formalism, such as CPN [M

B01] based on Coloured Petri nets [CW 05], Viptool [R B06], [JN03], Yasper [KM 08]

or ProM [B v05], to mention just a few of them. Most of the tools, for Petri nets or its

extensions that are available today, are determined to create models and some of them to

analyse the models. Petriflow was created with another purpose in mind. Its main goal is

to provide enough tools and components to define a process that can be executed as a

fully functional application. Petriflow as a language blurs the border between modelling

and programming languages. Petriflow uses advantages of a modelling language, such as

an easy-to-understand form of a graph, mathematical definition, option to analyse and

simulate models before its deployment, and applies it to create software applications as a

programming language. Like with every programming language, it needs a compatible

language interpreter or application engine to utilize and execute Petriflow models.

To enable creating a deployable process models Petriflow extends Petri nets formalism

with several components. Firstly more types of arcs are introduced such as inhibitor arc,

reset arc, and read arc, that are well-known extensions of Petri nets. Next, the firing of

a transition is enriched with more steps to better describe the behaviour of an activity

which a transition represents. A transition with a more complex act of execution is in

Petriflow called a task. A task consists of five events that may or may not be executed:

• Assign event - consumes tokens from input places of the transition

• Action - the state of the transition where an actor executes activity represented by

the transition

• Cancel event - the execution of the task is cancelled and consumed tokens are

returned to the input places of the transition

2

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

• Delegate event - the optional event which delegates execution of the task to

another actor

• Finish event - produces tokens to output places of the transitions

Figure 2.1: Petri net defining events of the Petriflow task transition [M M17]

In Petriflow, an actor is an entity that can fire a transition or a task. An actor can be

understood as a user of the system or in case of automation a system itself. To cover the

most of the needs to build an application process Petriflow next extends Petri nets with

roles, data and so-called actions.

Roles in Petriflow provide means to authorize chosen actors to execute certain transi-

tions or tasks. If a role is assigned to a transition, only an actor with the specific role can

fire the transition.

Model data are variables to store values needed for the desired behaviour of a modelled

process. Data variables can be of various types, for example, but not limited to, text,

number, date, boolean, enumeration etc. Every data variable defined in a process model

can be bound to a transition where complementary definitions about variable’s behaviour

within the transition are added. Data variable with behavioural characteristics within a

transition is called a data field.

The last, but not least, extension of Petri nets are actions. Actions are small snippets

of code that defines a reaction to a certain event within a transition or a data variable or

a data field. They can be understood as functions that run every time when an event,

inside a Petriflow component to which they are bound to, happens.

3

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

As mentioned before, the main goal of Petriflow language is to create deployable

process models, so Petriflow models are exported in XML format and embedded into a

compatible application engine to create a fully functional application. The only exceptions

in a Petriflow model are actions. They are written in the domain-specific language based

on the programming language Groovy DSL.

2.1 Multi-process environment

If we imagine modelling of a process, we typically mean creating a model of some process

that consists of a number of activities, in Petri net transitions, connected with trigger

conditions, in Petri net called places. In a standard way of modelling a process in Petri

nets, we do not take the outside environment of the process into consideration. So,

the modelled process is unaware of its surroundings or the context that it is situated

in. However, modelling processes in Petriflow language for the purpose of building an

application, cannot be done this way. Applications that are written in Petriflow language

do not contain only one process. A typical Petriflow application is created with mostly

two or more processes. Each application process represents a functionality or a feature of

the deployed application.

An application process can be modelled to describe life-cycle of an entity that exists

inside the system or to express a certain functionality that is desired in the application.

For better understanding, we introduce the example of an application for a restaurant.

The manager of the restaurant wants a system to enable table reservation and to monitor

various activities of restaurants waiters, for example, communication with customers.

After some analysis of the situation in the restaurant, we decide to model processes which

create the desired application. First to be created are processes of the entities that exist

in the context of the restaurant. Processes of life-cycle of a table, a customer and a waiter

are modelled. Next, we want to be able to reserve a table in the restaurant, so the process

of table reservation is introduced to the application. With enough knowledge of the inner

workings of the restaurant and after consultation with the restaurant’s staff, the desired

application can be created with these four processes.

As you can see from the example, there is one big problem. If we model the processes

as separate components of the application, we cannot guarantee the desired behaviour of

the application. Because the process of a reservation does not know about the process

of a customer, it cannot pair a table reservation activity with the right person, and the

process of life-cycle of a customer is never notified, that it has a reservation. The same

situation can be seen between processes of a table and a reservation. Someone can argue,

that this problem could be easily solved by manually pairing the customer process to

the reservation process. However, that is not the desired solution as we are trying to

automate as much as possible and let users of the system focus on their own tasks. In

4

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

this example, it is clear to see why inter-process communication is needed for building

rich applications from processes.

2.1.1 Infinite instances of the process

The majority of restaurants have more than one table, one waiter and one customer. How

can we model more tables if we have one process of a table? In Petriflow, deployed process

model serves as a template. It defines all activities (transitions) in the process when the

transitions can be fired and also who can fire the transitions and what data are bound

to them. The deployed process model does not contain a marking of the process or the

actual values of the data. With every new table in the application, a new instance of the

process is created. An instance of the process is also called a case. When it is desired

to create a new instance of a process, for example, adding a new table to the restaurant,

the whole model of the process is copied and the special transition in the process is fired.

The transition is called a constructor and every Petriflow model begins with one. The

constructor produces tokens into to places according to the initial marking defined in the

process model. The constructor also initializes default values in data variables if the data

variable has defined one. When the constructor is finished the new instance is ready to

operate according to the process model.

2.1.2 Application scopes

As we can see, an application that is written in Petriflow language, is composed of

several components, like numerous processes and their infinite number of instances. Every

component of a Petriflow application operates within its own space, named scope. Petriflow

defines four types of scopes:

• Application scope - contains all processes that create an application. It is often

referenced as the global space.

• Process scope - concerns one process and contains all instances that were created

from the process. In this scope, the deployed process model is also located.

• Instance scope - is the scope of one particular instance of the process. This scope

contains the current marking of the process model, all data variables values.

• Transition scope - represent the space of one active particular transition in the

instance of the process. It contains information about data fields and its states in

the case of a task transition.

The scopes in Petriflow can be also illustrated as a system of layers, like in the Figure 2.2.

5

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Figure 2.2: Scopes of a Petriflow application

2.2 Transition synchronization

To further explain why Petriflow can be modelling and programming language at the same

time, we can use an analogy of object-oriented programming languages. You can imagine

a process model as a class and an instance of the process as an object of that class. To

more develop this analogy, transitions in Petriflow net can be expressed as methods of the

class and places as control variables of the class. Since a method of a class is a simple

function, that can be called if we have a reference to the object of the class, it should

be able to call transition in a similar manner. Modifiers of methods, in object-oriented

programming language, define access rights to the method such as public or private. For

simplicity, we omit this attribute of the programming language in Petriflow.

Based on the mentioned comparison with the object-oriented languages, we defined

means to fire transition remotely from one instance to another. This feature is in Petriflow

called a transition synchronization. The basic idea is firing more transitions across

different instances in a synchronous manner. In Petriflow, we have two types of transition

to synchronize. The standard type of a transition, from original the Petri net formalism,

called a event transition and a task transition with a more complex firing mechanism.

When a transition wants to call other transitions synchronously, it has to check if chosen

remote transitions meet two conditions:

1. All the chosen transitions have to be enabled within their own instance.

2. An actor has to have a valid role according to the roles defined in the chosen

6

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

transitions.

Only if all the chosen transitions fulfil these conditions, then the caller transition can fire.

If it is synchronization between event transitions, all called transitions fire at the same time

as the caller transitions, thus all tokens from the input places of the involved transition

are consumed in their instances and at the same moment, tokens are produced to the

output places of involved transitions. Synchronization of the task transitions contains

more steps than synchronization of the event transitions, because of their more complex

inner structure. Every event inside the task transition has to be synchronized. If an

actor assigns the caller task transition, all the chosen transitions are assigned to the actor.

After assigning all the chosen transitions, the actor has access to all data fields inside the

transitions. If the actor is a user of the application all the data fields are displayed under

the caller transition, so he can work without interruption. All other events in the task

transition are synchronized as well. For example, the delegate event changes the actor in

all the chosen transitions and the finish event produces tokens in all involved instances.

A transition can also call chosen remote transition asynchronously. An asynchronous

call is executed regardless of enabledness of the called transitions. The second condition

involving process roles still remains. The caller transition continues its firing procedure

according to its own instances regardless of the call of the remote transition. This option

can be useful if we want to notify other instances and we do not care if a sent message is

received.

2.2.1 Selection of the synchronization partners

Until now we explained that the caller transition synchronizes with some chosen transitions.

Because we cannot predict how many instances of a process will exist in a deployed

application, transitions that we want to synchronize cannot be defined in a process model

statically. The decision-making of synchronization partners has to be on the run-time

of the application. To get the desired transition to the synchronization procedure we

introduced filters to Petriflow language. The filter defines criteria for the transitions which

we want to synchronize with. The filter is composed of two parts:

1. process query

2. selection

Process query is written in Petriflow Query Language. It serves to search for the desired

entity, like instances, transition etc., in a Petriflow application. The query language is

described in more details in the published Petriflow language definition. The selection

part of the filter defines the choice of the synchronization partners, thus which transitions

from the query result are chosen to synchronize with. The selection has several parameters

7

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

that define the logic of the choosing the transitions. Range parameters are the first, with

values for a minimal and maximal number of chosen transitions. The second parameter is

who will make the choice. The choice can be done manually when a user of the system,

who fires the transition, decides which transitions from the query results call remotely

or the choice can be done automatically. If the choice is left to the system, it will try to

select as much as the range parameters allow.

Figure 2.3: Diagram of the transition synchronization

The whole synchronization of the transitions if written in Action DSL of Petriflow

language. The action defining the synchronization call is bound to the appropriate event

of the transition.

The example in the Figure 2.4 demonstrates synchronization of two event transitions.

The caller transition is from the customer process and the called transition is from the

waiter process. As we can see when the transition ’Call a waiter’ is fired by a user of

the application, the action is executed. In the action, the query returns all instances of

the process waiter where the transition with the label ’Customer is calling’ is enabled.

Then the system automatically selects one instance, thus one waiter, and on the selected

instance fires the transition with the label ’Customer is calling’. Both the customer

8

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Figure 2.4: The example of the synchronization action

instance and the waiter, with this act of synchronization, know that the waiter is coming

to the customer.

2.3 Summary and outlook

In this report we provide concepts and definition of inter-process communication between

instances of several object centric processes in low-code language Petriflow. Basically, we

discuss relationship on data level, synchronization of events on workflow level and concept

of forms as subforms on user interface level. We plan to rework the definition to provide

precise formal semantics analogous with the definition of singleton object-centric process.

9

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Bibliography

[B v05] et al. B. van Dongen A.K. Alves de Medeiros. “A New Era in Process Mining

Tool Support.” In: Application and Theory of Petri Nets 2005, LNCS 3536,

pp. 444454. Springer-Verlag, Berlin (2005).

[CW 05] W.M.P. van der Aalst C.W. Gunther. “Modeling the Case Handling Principles

with Colored Petri Nets”. In: Sixth Workshop and Tutorial on Practical Use

of Coloured Petri Nets and the CPN Tools, 2005, Department of Computer

Science, University of Aarhus, PB-576, 211230 (2005).

[J D01] G. Juhás J. Desel. “What Is a Petri Net? Informal Answers for the Informed

Reader. In Ehrig, Hartmut;” in: nifying Petri Nets. LNCS. 2128. Springer-

link.com. pp. 1–25. (2001).

[JN03] R. Lorenz J. Desel G. Juhas and C. Neumair. “Modelling and Validation with

VipTool.” In: BPM 2003, LNCS 2678, pp. 380389, SpringerVerlag, (2003).

[KM 08] et al. K.M. van Hee J. Keiren. “Designing case handling systems”. In: Trans-

actions on Petri Nets and Other Models of Concurrency I, LNCS 5100, pp.

119133, Springer, Berlin (2008).

[M B01] et al. M. Beaudouin-Lafon W. E. Mackay. “CPN/Tools: A Tool for Editing and

Simulating Coloured Petri Nets”. In: Tools and Algorithms for the Construction

and Analysis of Systems, LNCS 2031, pp. 574577, Springer-Verlag (2001).

[M M17] et al. M. Mladoniczky G. Juhas. “Petriflow: Rapid language for modelling Petri

nets with roles and data fields.” In: Algorithms and Tools for Petri Nets, 45.

(2017).

[R B06] et al. R. Bergenthum J. Desel. “Can I Execute my Scenario in Your Net?

VipTool tells you!” In: Application and Theory of Petri Nets and Other Models

of Concurrency. LNCS 4024, pp. 381390, Springer-Verlag, (2006).

10

LowcodeOCP Definition of inter-process communication (v0.1) October 1, 2025

Appendix A

Supplementary Material

For newest version of this report and other supplementary material including XML scheme

of the syntax of the Petriflow OCP see petriflow.org.

11

	Contents
	List of Figures
	Introduction
	Petriflow
	Multi-process environment
	Infinite instances of the process
	Application scopes

	Transition synchronization
	Selection of the synchronization partners

	Summary and outlook

	Supplementary Material

