
Pan-European University, Faculty of Informatics

Interim Research Report

Definition of object-centric process

of the project

Requirements and formal definition of a low-code

language based on object-centric processes -

LowcodeOCP

Authors:

Gabriel Juhás, Milan Mladoniczky, Juraj Mažári and Tomáš Kováčik

Contact:

gabriel.juhas@paneurouni.com, milan.mladoniczky@paneurouni.com

Funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia

under the project No.

09I03-03-V04-00493

October 1, 2025

Version: v0.1

Abstract

This interim report summarizes the current progress of the task 2.1 of the research project

LowcodeOCP resulting in the formal definition of the standalone object-centric process.

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Contents

Contents i

1 Introduction 1

2 Formal definition of a object centric process in low-code language Petri-

flow 4

2.1 Mathematical preliminaries . 4

2.2 Petriflow process definition . 4

2.3 Summary and outlook . 9

A Supplementary Material 12

i

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Chapter 1

Introduction

In this chapter, we discuss requirements on a low-code language for object centric processes,

resulting in definition of low-code language called Petriflow, namely we discuss a definition

of a process and inter-process communication. We also illustrate on several real-life use

cases how the Petriflow models of business processes can directly be used as implementation

when deployed in a Petriflow interpreter. Briefly, Petriflow is based on extended Petri nets

(where transitions represents tasks), enriched by data variables and data forms (associated

with tasks).

Petriflow is a high-level modeling language for process-driven application development

[Juh+21]. Petriflow follows the programming paradigm called process-driven programming

(PDP) [Juh+19]. A comparison of Petriflow’s concept with other well-known programming

paradigms is essential to understanding the meaning of the PDP paradigm. Petriflow

language combines the advantages of object-oriented programming (OOP), business process

modeling (BPM) [ADO00; DPW04], event-driven programming (EDP), and relational

databases (RDB).

Object-oriented programming languages brought about a distinguishing feature, en-

capsulation. This was a key step for the business world that needed new languages to

solve the problem of growing application complexity. OOP was a concept that solved the

problems that developers had with procedural and imperative programming. The concept

of classes that contain data and methods strongly supports the modularity of applications.

While binding methods with the data in classes was one of the main features of OOP

that helped to create more modular programs, Petriflow is binding a workflow process to

a class to describe the life cycle of objects of the class.

The main building blocks of object-oriented programs are classes and their objects. In

comparison, the main building blocks of process-driven programs in the Petriflow language

are processes and their instances, called cases. A class is a blueprint of an object, and a

Petriflow process is a blueprint of a Petriflow process instance or case. Simply, a Petriflow

process is a class enriched by a workflow process that defines the life cycle of the objects

in that class. More accurately, a Petriflow process consists of data variables, tasks and

1

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

actions, roles, and a workflow process. In the same way as in classes in OOP, data variables

in Petriflow processes represent all attributes of a Petriflow process instance. The change

of the value of a data variable can be triggered by a so-called set event. Reading a value

of a data variable can be triggered by a so-called get event.

Tasks are the active parts of Petriflow processes. Data variables can be associated

with workflow tasks to define data fields and create task forms. A data field, which is an

association of a data variable to a task, is given as a rich relation that states:

• whether a get event and/or a set event can trigger the data variable, i.e. whether

its value is readable and/or editable,

• whether the value of data variable is required,

• what are valid values of the data variable within the data field.

Tasks have a simple life cycle: a task can be enabled, disabled or executed:

• if a task is enabled, its change to the state executed can be triggered by a so-called

assign-event

• if a task is enabled, its readable data fields are accessible for reading by get-events

• if a task is executed, its readable data fields are accessible for reading by get-events

• if a task is executed, its editable data fields can be changed to valid values by

set-events

• if a task is executed and all its required data fields have valid values, its change to

the state enabled or disabled can be triggered by a so-called finish-event.

Using the principles of event-driven programming, each data variable and each task is

associated with an event listener: whenever an event triggers a change in the value of a

data variable or whenever an event triggers a change of the task state, then a reaction

can be defined by pieces of code (called actions) in the event listener. Whenever an event

occurs, the actions in its event listener are executed. In actions, as a part of the code,

events for tasks and events for data variables can be emitted. In this way, events and

their reactions can create chains. Roles [BDM11] or user lists can be associated with

task events, defining for each task which users are authorized to trigger events on that

task. Similarly to data fields, an association of users with events is a rich relation. For

example, a user authorized to trigger an assign event of a task can emit the assign event.

By emitting the assign event, this user has to choose one of the users that are authorized

to possibly trigger the finish event of this task and only this user is then authorized to

trigger set events of editable data fields of this task and to trigger the finish event of this

task. In other words, by emitting an assign event, the authorized user is assigning that

2

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

task to a user (possibly himself), that is authorized to perform the task, i.e. to fill editable

data fields and finish the task.

As a workflow process, Petriflow language uses place/transition Petri nets [DJ01;

Des05; DR15] enriched by reset arcs [Aal+09], inhibitor arcs [AJ15] and read arcs [Vog02]

to define the life cycle of the Petriflow process. Places of the Petri net represent the control

variables. As mentioned above, transitions of Petri net represent tasks of the workflow

process. A task is enabled, whenever the corresponding transition in the underlying Petri

net is enabled. The assign event occurring on this task consumes tokens from the input

places of the corresponding transition and moves the state of the task to be executed.

The finish event on the task being executed produces tokens to the output places of

the corresponding transition. In this way, the workflow process defines when a task is

enabled, executed or disabled. The life cycle of a Petriflow process is given by flow of

assign/get/set/finish events on tasks and data variables respecting the restrictions on

events given by the underlying Petri net and permissions in roles and user lists.

When compared with relational databases, Petriflow processes correspond to tables,

while instances (cases) of the Petriflow processes correspond to single records (rows) of a

table. In a similar way to foreign keys in RDB and in a similar way to attributes of objects

containing references to other objects in OOP, data variables of Petriflow processes can

store the references to instances of Petriflow processes and references to the task and list

of tasks of Petriflow process instances. In this way, one can easily share forms associated

with one task as sub-forms within other tasks and implement a single source of truth

architecture.

Process models in Petriflow language employ principles of object-oriented programming,

relational databases and event-driven programming combining them with user authoriza-

tion and the concept of the life cycle of objects using workflow processes borrowed from

business process management. All this should bring a higher level of programming, with

information about the data layer, application (process) layer and presentation layer (forms)

covered by a single Petriflow object with the aim to make the development of complex

applications more structured, closer to the business user, faster, without the necessity

to deal with the implementation details of the middleware. Netgrif application builder

(NAB) is then a platform for developing process-driven applications. NAB produces

process models in Petriflow language – a combination of XML and Groovy. This code

can be directly interpreted in Netgrif application engine – Petriflow interpreter written in

Java using the framework Spring Boot and storing the data of Petriflow process instances

in MongoDB. Similarly to SQL build over relational databases, Petriflow language also

provides a powerful query language that enables to create filters over process instances

and their tasks [Juh+22; JJP23].

3

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Chapter 2

Formal definition of a object centric

process in low-code language

Petriflow

2.1 Mathematical preliminaries

We use N to denote the nonnegative integers and N+ to denote the positive integers.

Given two arbitrary sets A and B, the symbol BA denotes the set of all functions from A

to B. Given a function f from A to B and a subset C of A we write f |C to denote the

restriction of f to the set C. The symbol 2A denotes the power set of a set A. Given

a set A, the symbol |A| denotes the cardinality of A and the symbol idA the identity

function on the set A. We write id to denote idA whenever A is clear from the context.

The set of all multisets over a set A is denoted by NA. The addition of multisets over a

finite set A is denoted by +. Given two multisets m and m′ over A, m +m′ is defined

by ∀a ∈ A : (m+m′)(a) = m(a) +m′(a). Notice that (NA,+) is the free commutative

monoid over A. We do not distinguish between a subset X ⊆ A and its characteristic

multiset mX given by m(x) = 1 for each x ∈ X and m(x′) = 0 for each x′ ∈ A \ X.

Finally, we write as usual
∑

a∈A m(a)a to denote the multiset m over A. Given a binary

relation R ⊆ A× A over a set A, the symbol R+ denotes the transitive closure of R and

R∗ the reflexive and transitive closure of R.

2.2 Petriflow process definition

Let us now define formal semantics for Petriflow processes.

Definition 1 (Petriflow process)

A Petriflow object-centric process is a triple OCP = (Data,Worfklow, Interface),

where:

4

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

• Data is a triple Data = (V ariables, Types, Typing), such that:

– V ariables is a finite set of data variables

– Types is a set of data types such that for each data type V ∈ Types, V is a

set, called values of the data type V . We also consider a unique element null

such that for each V ∈ Types element null /∈ V .

– Typing is a function Typing : V ariables → Types associating a data type to

each data variable.

• Workflow is a six-tuple Workflow = (P, T, F, C+, C−,W), where:

– P is a finite set of places,

– T is a finite set of tasks, satisfying P ∩ T = ∅,

– F ⊆ (P × T) ∪ (T × P) is a flow relation,

– C+, C− ⊆ P × T are positive and negative context relations,

– W : F ∪ C+ ∪ C− → N+ ∪ P ∪ V is a weight function.

• Interface is a function Interface : T → 2V associating a subset of data variables

to each task. Given a task t ∈ T elements of Interface(t) are called data fields or

data refs of the task t and Interface(t) itself is also called a form of task t.

Definition 2 (State of Petriflow OCP) Given a set of users denoted by Users with

element null /∈ Users, then a state of a Petriflow OCP as defined in Definition 1 is a

function s with definition domain P ∪ V ∪ T such that:

• s|P : P → N is a function that associates a nonnegative marking with each place,

• for each v ∈ V : s(v) ∈ Typing(v) ∪ {null}, i.e. state of each data variable is a

value of the type of the variable or null,

• for each t ∈ T : s(t) = (assigned, accessibility, required, consumed) where

– assigned ∈ Users ∪ {null} determines whether a task is assigned to a user,

and

– accessibility is a function accesibility : Interface(t) → {visible, editable, hidden}
determining for each data field of the task whether it is visible, editable or hidden,

and

– required is a function required : Interface(t) → {0, 1} determining for each

data field of the task whether it is required (must have a value) or can be unfilled

(without any value), and

– consumed is a function consumed : {p ∈ P : (p, t) ∈ F} → N

5

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Definition 3 (Events and roles of a Petriflow OCP) Given a Petriflow OCP as de-

fined in Definition 1, and a set of users denoted Users we define a mapping Role and

events as follows:

• for each t ∈ T we define:

– Role(t) is a subset of set Users

– viewt denotes a view event and

– Role(viewt) is a subset of set Users

– assignt is a parametrized assign event with set of parameters Role(t),

– for each user u ∈ Role(t), Role(assignt(u)) is a subset of set Users satisfying

Role(assignt(u1)) = Role(assignt(u2)) for any u1, u2 ∈ Role(t)

– cancelt denotes a cancel event and

– Role(cancelt) is a subset of set Users

– finisht denotes a finish event

– Role(finisht) is a subset of set Users

– for each v ∈ V we define event getv and a parametrized event setv with set of

parameters Typing(v) ∪ {null}

Definition 4 (Enabled task) Given a Petriflow OCP as defined in Definition 1, we

define that a task t is enabled in state s of the Petriflow OCP ⇐⇒:

• s(t) = (assigned, accessibility, required, consumed) with assigned = null and

• for each (p, t) ∈ F ∪ C+ such that W ((p, t)) ∈ N there holds s(p) ≥ W ((p, t)) and

• for each (p, t) ∈ F ∪ C+ such that W ((p, t)) ∈ P ∪ V there holds s(W ((p, t))) ∈
N ∧ s(p) ≥ s(W ((p, t))) and

• for each (p, t) ∈ C− such that W ((p, t)) ∈ N there holds s(p) < W ((p, t)) and

• for each (p, t) ∈ C− such that W ((p, t)) ∈ P∪V there holds s(W ((p, t))) ∈ N∧s(p) <
s(W ((p, t))).

Definition 5 (Triggering a view event) Given a Petriflow OCP as defined in Defi-

nition 1, and a set of users denoted Users with extended mapping Role and events as

defined in Definition 3, we define triggering of a view event by a user u ∈ Users in state

s of the Petriflow OCP as follows:

• for each t ∈ T event viewt can be triggered by user u in state s ⇐⇒

– user u ∈ Role(viewt) and

6

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

∗ task t is enabled in state s or

∗ s(t) = (assigned, accessibility, required, consumed) with assigned ≠ null.

Definition 6 (Triggering an assign event) Given a Petriflow OCP as defined in Def-

inition 1, and a set of users denoted Users with extended mapping Role and events as

defined in Definition 3, we define triggering of an assign event by a user u ∈ Users in

state s of the Petriflow OCP as follows:

• for each t ∈ T event assignt(x) with user x ∈ Role(t) as a parameter can be triggered

by user u in state s ⇐⇒

– user u ∈ Role(assignt(x)) and

– task t is enabled in state s.

When an assign event assignt(x) can be triggered by user u in state s with s(t) =

(assigned, accessibility, required, consumed) then its triggering leads to a new state s′

that differs from state s as follows:

• for each (p, t) ∈ F such that W ((p, t)) ∈ N there holds s′(p) = s(p)−W ((p, t)) and

consumed(p) = W ((p, t)) and

• for each (p, t) ∈ F such that W ((p, t)) ∈ P ∪V there holds s′(p) = s(p)−s(W ((p, t)))

and consumed(p) = s(W ((p, t))) and

• assigned = x.

Definition 7 (Triggering a cancel event) Given a Petriflow OCP as defined in Def-

inition 1, and a set of users denoted Users with extended mapping Role and events as

defined in Definition 3, we define triggering of an cancel event by a user u ∈ Users in

state s of the Petriflow OCP as follows:

• for each t ∈ T event cancelt can be triggered by user u in state s ⇐⇒

– s(t) = (assigned, accessibility, required, consumed) with assigned ≠ null and

– user u ∈ Role(cancelt).

When a cancel event cancelt can be triggered by user u in state s with

s(t) = (assigned, accessibility, required, consumed)

then its triggering leads to a new state s′ that differs from state s as follows:

• for each (p, t) ∈ F there holds s′(p) = s(p) + consumed(p) and

• assigned = null.

7

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Definition 8 (Triggering a finish event) Given a Petriflow OCP as defined in Def-

inition 1, and a set of users denoted Users with extended mapping Role and events as

defined in Definition 3, we define triggering of an finish event by a user u ∈ Users in

state s of the Petriflow OCP as follows:

• for each t ∈ T event finisht can be triggered by user u in state s ⇐⇒

– s(t) = (assigned, accessibility, required, consumed) with assigned ≠ null and

– user u ∈ Role(finisht) and

– for each v ∈ Interface(t) : required(v) = 1 =⇒ s(v) ̸= null and

– for each (t, p) ∈ F such that W ((t, p)) ∈ P ∪ V there holds s(W ((t, p))) ∈ N.

When a finish event finisht can be triggered by user u in state s with

s(t) = (assigned, accessibility, required, consumed)

then its triggering leads to a new state s′ that differs from state s as follows:

• for each (t, p) ∈ F such that W ((t, p)) ∈ N there holds s′(p) = s(p) +W ((t, p)) and

• for each (t, p) ∈ F such that W ((t, p)) ∈ P ∪V there holds s′(p) = s(p)+s(W ((t, p)))

and

• assigned = null.

Definition 9 (Triggering a set event) Given a Petriflow OCP as defined in Defini-

tion 1, and a set of users denoted Users with extended mapping Role and events as defined

in Definition 3, we define triggering of a set event by a user u ∈ Users in state s of the

Petriflow OCP as follows:

• for each v ∈ V and each value ∈ Typing(v) ∪ {null} event setv(value) can be

triggered by user u in state s ⇐⇒

– there exists a task t ∈ T such that

s(t) = (assigned, accessibility, required, consumed)

with assigned = u and v ∈ Interface(t) and accessibility(v) = editable.

When setv(value) can be triggered by user u in state s then its triggering leads to a new

state s′ that differs from state s as follows:

• s’(v) = value.

8

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Definition 10 (Triggering a get event) Given a Petriflow OCP as defined in Defi-

nition 1, and a set of users denoted Users with extended mapping Role and events as

defined in Definition 3, we define triggering of a get event by a user u ∈ Users in state s

of the Petriflow OCP as follows:

• for each v ∈ V event getv can be triggered by user u in state s ⇐⇒

– there exists a task t ∈ T such that

s(t) = (assigned, accessibility, required, consumed)

with

∗ t is enabled in s or assigned = u and

∗ v ∈ Interface(t) and

∗ accessibility(v) ̸= hidden.

2.3 Summary and outlook

This report contains the basic definition of a singleton object-centric process in low-code

language Petriflow, including definition of the process structure consisting of data, workflow

and interfaces of workflow tasks, state of the object centric process, events and roles on

tasks, events on data attributes and behavior based on triggering events by a user.

For better readability we plan to include informal description of the above mentioned

formal artifacts of object centric processes together with some illustrative examples to

make the formal definition easier to understand. We also plan to extend the definition

with actions and their behavior.

9

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Bibliography

[ADO00] Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, eds. Business

Process Management, Models, Techniques, and Empirical Studies. Vol. 1806.

Lecture Notes in Computer Science. Springer, 2000.

[Aal+09] Wil M. P. van der Aalst et al. “Soundness of Workflow Nets with Reset Arcs”.

In: Trans. Petri Nets Other Model. Concurr. 3 (2009), pp. 50–70.

[AJ15] Mohammed A. Alqarni and Ryszard Janicki. “On Interval Process Semantics

of Petri Nets with Inhibitor Arcs”. In: Petri Nets. Vol. 9115. Lecture Notes in

Computer Science. Springer, 2015, pp. 77–97.

[BDM11] Robin Bergenthum, Jörg Desel, and Sebastian Mauser. “Workflow Nets with

Roles”. In: EMISA. Vol. P-190. LNI. GI, 2011, pp. 65–78.

[Des05] Jörg Desel. “Process Modeling Using Petri Nets”. In: Process-Aware Informa-

tion Systems. Wiley, 2005, pp. 147–177.

[DJ01] Jörg Desel and Gabriel Juhás. “”What Is a Petri Net?”” In: Unifying Petri

Nets. Vol. 2128. Lecture Notes in Computer Science. Springer, 2001, pp. 1–25.

[DPW04] Jörg Desel, Barbara Pernici, and Mathias Weske, eds. Business Process Man-

agement: Second International Conference, BPM 2004, Potsdam, Germany,

June 17-18, 2004. Proceedings. Vol. 3080. Lecture Notes in Computer Science.

Springer, 2004.

[DR15] Jörg Desel and Wolfgang Reisig. “The concepts of Petri nets”. In: Softw. Syst.

Model. 14.2 (2015), pp. 669–683.

[JJP23] G. Juhás, A. Juhásová, and L. Petrovič. “Low-Code Languages in IT Education:

Integrating Theory and Practice”. In: Prof. ICETA 2023 - 21st Year of

International Conference on Emerging eLearning Technologies and Applications.

IEEE, 2023, pp. 249–257.

[Juh+21] G. Juhás et al. “Petriflow language and Netgrif Application Builder”. In:

CEUR Workshop Proceedings 2973 (2021), pp. 171–175.

10

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

[Juh+22] G. Juhás et al. “Low-code platforms and languages: the future of software

development”. In: Proc. 20th Anniversary of IEEE International Conference

on Emerging eLearning Technologies and Applications, ICETA 2022. IEEE,

2022, pp. 286–293.

[Juh+19] A. Juhásová et al. “IT induced innovations: Digital transformation and process

automation”. In: Proc. ICETA 2019 - 17th IEEE International Conference on

Emerging eLearning Technologies and Applications. IEEE, 2019, pp. 322–329.

[Vog02] Walter Vogler. “Partial order semantics and read arcs”. In: Theor. Comput.

Sci. 286.1 (2002), pp. 33–63.

11

LowcodeOCP Definition of object-centric process (v0.1) October 1, 2025

Appendix A

Supplementary Material

For newest version of this report and other supplementary material including XML scheme

of the syntax of the Petriflow OCP see petriflow.org.

12

	Contents
	Introduction
	Formal definition of a object centric process in low-code language Petriflow
	Mathematical preliminaries
	Petriflow process definition
	Summary and outlook

	Supplementary Material

